43,486 research outputs found

    An Expert System for Guitar Sheet Music to Guitar Tablature

    Get PDF
    This project applies analysis, design and implementation of the Optical Music Recognition (OMR) to an expert system for transforming guitar sheet music to guitar tablature. The first part includes image processing and music semantic interpretation to interpret and transform sheet music or printed scores into editable and playable electronic form. Then after importing the electronic form of music into internal data structures, our application uses effective pruning to explore the entire search space to find the best guitar tablature. Also considered are alternate guitar tunings and transposition of the music to improve the resulting tablature

    CONTRAST BETWEEN LIGHT AND SOUND WAVELENGTHS PERCEIVED BY HUMANS\ud \ud

    Get PDF
    A quantitative interrelation between the physical parameters of electromagnetic and acoustic waves perceived by the sight and hearing organs of a human has been discovered. It is shown that visible light wavelengths can be correlated with the range most used by humans for acoustic communication, including, in particular, verbal dialogue. It is shown, that maxima of spectroscopic sensitivity of the eye receptors are placed on the scale of wavelengths like musical consonance intervals (the small third, major third, quart)

    A New Measurement of the Stellar Mass Density at z~5: Implications for the Sources of Cosmic Reionization

    Get PDF
    We present a new measurement of the integrated stellar mass per comoving volume at redshift 5 determined via spectral energy fitting drawn from a sample of 214 photometrically-selected galaxies with z'<26.5 in the southern GOODS field. Following procedures introduced by Eyles et al. (2005), we estimate stellar masses for various sub-samples for which reliable and unconfused Spitzer IRAC detections are available. A spectroscopic sample of 14 of the most luminous sources with =4.92 provides a firm lower limit to the stellar mass density of 1e6 Msun/Mpc^3. Several galaxies in this sub-sample have masses of order 10^11 Msun implying significant earlier activity occurred in massive systems. We then consider a larger sample whose photometric redshifts in the publicly-available GOODS-MUSIC catalog lie in the range 4.4 <z 5.6. Before adopting the GOODS-MUSIC photometric redshifts, we check the accuracy of their photometry and explore the possibility of contamination by low-z galaxies and low-mass stars. After excising probable stellar contaminants and using the z'-J color to exclude any remaining foreground red galaxies, we conclude that 196 sources are likely to be at z~5. The implied mass density from the unconfused IRAC fraction of this sample, scaled to the total available, is 6e6 Msun/Mpc^3. We discuss the uncertainties as well as the likelihood that we have underestimated the true mass density. Including fainter and quiescent sources the total integrated density could be as high as 1e7 Msun/Mpc^3. Using the currently available (but highly uncertain) rate of decline in the star formationhistory over 5 <z< 10, a better fit is obtained for the assembled mass at z~5 if we admit significant dust extinction at early times or extend the luminosity function to very faint limits. [abridged]Comment: Accepted for Publication in ApJ, 39 page

    Hydraulophone design considerations : absement, displacement, and velocity-sensitive music keyboard in which each key is a water jet

    Get PDF
    We present a musical keyboard that is not only velocity-sensitive, but in fact responds to absement (presement), displacement (placement), velocity, acceleration, jerk, jounce, etc. (i.e. to all the derivatives, as well as the integral, of displacement). Moreover, unlike a piano keyboard in which the keys reach a point of maximal displacement, our keys are essentially infinite in length, and thus never reach an end to their key travel. Our infinite length keys are achieved by using water jet streams that continue to flow past the fingers of a person playing the instrument. The instrument takes the form of a pipe with a row of holes, in which water flows out of each hole, while a user is invited to play the instrument by interfering with the flow of water coming out of the holes. The instrument resembles a large flute, but, unlike a flute, there is no complicated fingering pattern. Instead, each hole (each water jet) corresponds to one note (as with a piano or pipe organ). Therefore, unlike a flute, chords can be played by blocking more than one water jet hole at the same time. Because each note corresponds to only one hole, different fingers of the musician can be inserted into, onto, around, or near several of the instrument’s many water jet holes, in a variety of different ways, resulting in an ability to independently control the way in which each note in a chord sounds. Thus the hydraulophone combines the intricate embouchure control of woodwind instruments with the polyphony of keyboard instruments. Various forms of our instrument include totally acoustic, totally electronic, as well as hybrid instruments that are acoustic but also include an interface to a multimedia computer to produce a mixture of sounds that are produced by the acoustic properties of water screeching through orific plates, as well as synthesized sounds

    The coupling of action and perception in musical meaning formation

    Get PDF
    The embodied perspective on music cognition has stressed the central role of the body and body move- ments in musical meaning formation processes. In the present study, we investigate by means of a behavioral experiment how free body movements in response to music (i.e., action) can be linked to specific linguistic, metaphorical descriptions people use to describe the expressive qualities they perceive in the music (i.e., per- ception). We introduce a dimensional model based on the Effort/Shape theory of Laban in order to target musical expressivity from an embodied perspective. Also, we investigate whether a coupling between action and perception is dependent on the musical background of the participants (i.e., trained versus untrained). The results show that the physical appearance of the free body movements that participants perform in response to music are reliably linked to the linguistic descriptions of musical expressiveness in terms of the underlying quality. Moreover, this result is found to be independent of the participants’ musical background

    On the Evolution of the Star Formation Rate Function of Massive Galaxies. Constraints at 0.4<z<1.8 from the GOODS-MUSIC Catalogue

    Full text link
    [abridged] We study the evolution of the Star Formation Rate Function (SFRF) of massive galaxies over the 0.4<z<1.8 redshift range and its implications for our understanding of the physical processes responsible for galaxy evolution. We use multiwavelength observations included in the GOODS-MUSIC catalogue, which provides a suitable coverage of the spectral region from 0.3 to 24 micron and either spectroscopic or photometric redshifts for each object. Individual SFRs have been obtained by combining UV and 24 micron observations, when the latter were available. For all other sources an "SED fitting" SFR estimate has been considered. We then define a stellar mass limited sample, complete in the Mstar>1.e10 Msun range and determine the SFRF using the 1/Vmax algorithm. We define simulated galaxy catalogues based on three different semi-analytical models of galaxy formation and evolution. We show that the theoretical SFRFs are well described by a double power law functional form and its redshift evolution is approximated with high accuracy by a pure evolution of the typical SFR. We find good agreement between model predictions and the high-SFR end of the SFRF, when the observational errors on the SFR are taken into account. However, the observational SFRF is characterised by a double peaked structure, which is absent in its theoretical counterparts. At z>1.0 the observed SFRF shows a relevant density evolution, which is not reproduced by SAMs, due to the well known overprediction of intermediate mass galaxies at z~2. The agreement at the low-SFR end is poor: all models overpredict the space density of SFR~1 Msun/yr and no model reproduces the double peaked shape of the observational SFRF. If confirmed by deeper IR observations, this discrepancy will provide a key constraint on theoretical modelling of star formation and stellar feedback.Comment: 12 pages, 4 figures and 3 table. Accepted for publication by MNRAS - updated reference
    • 

    corecore