108 research outputs found

    Fiber Optic Sensors in Chemical and Biological Applications

    Get PDF
    The Special Issue "Fiber Optic Sensors in Chemical and Biological Applications” gathers recent original papers. The subjects of the papers cover a broad range of optical fiber chemical sensors and biosensors applied for regulation in bioreactors, to novel concepts of intrinsic optical fiber sensors

    Novel Specialty Optical Fibers and Applications

    Get PDF
    Novel Specialty Optical Fibers and Applications focuses on the latest developments in specialty fiber technology and its applications. The aim of this reprint is to provide an overview of specialty optical fibers in terms of their technological developments and applications. Contributions include:1. Specialty fibers composed of special materials for new functionalities and applications in new spectral windows.2. Hollow-core fiber-based applications.3. Functionalized fibers.4. Structurally engineered fibers.5. Specialty fibers for distributed fiber sensors.6. Specialty fibers for communications

    Micro-/Nano-Fiber Sensors and Optical Integration Devices

    Get PDF
    The development of micro/nanofiber sensors and associated integrated systems is a major project spanning photonics, engineering, and materials science, and has become a key academic research trend. During the development of miniature optical sensors, different materials and micro/nanostructures have been reasonably designed and functionalized on the ordinary single-mode optical fibers. The combination of various special optical fibers and new micro/nanomaterials has greatly improved the performance of the sensors. In terms of optical integration, micro/nanofibers play roles in independent and movable optical waveguide devices, and can be conveniently integrated into two-dimensional chips to realize the efficient transmission and information exchange of optical signals based on optical evanescent field coupling technology. In terms of systematic integration, the unique optical transmission mode of optical fiber has shown great potential in the array and networking of multiple sensor units.In this book, more than ten research papers were collected and studied, presenting research on optical micro/nanofiber devices and related integrated systems, covering high-performance optical micro/nanofiber sensors, fine characterization technologies for optical micro/nanostructures, weak signal detection technologies in photonic structures, as well as fiber-assisted highly integrated optical detection systems

    Tapered Optical Microfibre Based Structures for Sensing Applications

    Get PDF
    There has been an increasing demand in recent years from a wide variety of industries for sensors which combine high sensitivity, fast response, compact size and low power consumption. Tapered optical microfibres can generate easily accessible evanescent fields with a large intensity and short decay distance which make microfibres very suitable candidates as the basis of sensors to suit a variety of application areas. In this thesis, experimental research is presented concerning the development of sensors using structures based on tapered optical microfibres, with a particular emphasis on biochemical sensing applications. Light propagation along an optical microfibre depends on its shape, diameter and surface roughness. A microfibre fabrication setup developed as a key prerequisite to the research undertaken, that utilized an adapted microheater brushing and tapering technique is described. The setup allows for the fabrication of microfibres and related structures with controllable taper shapes and diameters. There is a tradeoff between sensitivities and microfibre diameters (which directly affects the robustness of the microfibre structures) for microfibre based sensors. To mitigate this tradeoff, two microfibre based structures were chosen and investigated for sensor development in the research reported in this thesis. The first structure was an optical microfibre coupler. Such an optical microfibre coupler, which has environment dependent coupling coefficients in addition to easily accessible evanescent fields, is a simple and efficient structure for sensing. A refractive index sensor with a maximum sensitivity of 4155 nm/RIU was developed using an optical microfibre coupler. Utilizing the structure’s refractive index sensitivity, a humidity sensor was developed by coating a microfibre coupler with a layer of humidity sensitive polymer. A biosensor was also developed by immobilizing a bio-receptor on the surface of a packaged microfibre coupler. The ability of the developed biosensor to detect the specific binding between an antibody-antigen pairing for potential applications in clinical diagnostics was demonstrated and is reported in this thesis. The second structure was a tapered optical microfibre which incorporates gold-silver alloy nanoparticles. By immobilizing nanoparticles onto the surface of a tapered optical. microfibre to generate localized surface plasmon resonances, sensitivity enhancement can be achieved for microfibres with relatively large diameters, which has the benefit of being more mechanically robust. The use of gold-silver alloy nanoparticles with different alloy formulations can offer the extra advantage of tunable physicochemical properties. The localized surface plasmon resonance effects were investigated and compared for sensor samples incorporating nanoparticles with different alloy formulations. As an example of a sensing application using the structure, a novel pH sensor was demonstrated by coating the immobilized nanoparticles with a pH sensitive polyelectrolyte multilayer film.

    Environment-friendly surface acoustic wave humidity sensor with sodium alginate sensing layer

    Get PDF
    A low-cost and environment-friendly surface acoustic wave (SAW) humidity sensor was fabricated on a quartz substrate using sol-gel/spin-coated sodium alginate (SA) sensing layer. The sensing mechanism is based on the frequency shift of the SAW sensor caused by both mass loading and electrical loading, with the former being the dominant factor. The SA film prepared in this study is an environment-friendly material with a large number of hydroxyl and carboxylate groups, which easily adsorb and react with H2O molecules to form hydrogen bonds. These adsorbed H2O molecules lead to significantly enhanced mass loading and signal responses of the SAW sensor. Electrical loading effect is also generated due to the transfer of hydrogen ions in the H2O molecules, which alters the electrical resistance and results in changes of resonant frequencies of the SAW device. When the relative humidity (RH) is increased from 35% to 85%, the responses of the SAW sensor with 1 wt% SA are significantly decreased. Whereas in a low humidity environment (e.g., RH <35%), the responses of the sensor show a linear relationship with the change of humidity. The developed humidity sensor shows good short-term/long-term stabilities and a low temperature coefficient of frequency

    Optical Fiber Interferometric Sensors

    Get PDF
    The contributions presented in this book series portray the advances of the research in the field of interferometric photonic technology and its novel applications. The wide scope explored by the range of different contributions intends to provide a synopsis of the current research trends and the state of the art in this field, covering recent technological improvements, new production methodologies and emerging applications, for researchers coming from different fields of science and industry. The manuscripts published in the Special issue, and re-printed in this book series, report on topics that range from interferometric sensors for thickness and dynamic displacement measurement, up to pulse wave and spirometry applications

    Dispersion tailoring in both integrated photonics and fiber-optic based devices

    Full text link
    Tesis por compendio[EN] This Thesis focuses on the study, implementation and characterization of chromatic dispersion tailoring employing both optical fiber and photonic integrated waveguides. Chromatic dispersion causes that the different spectral components of an optical pulse travel at different velocities. This effect can be separated into two different fundamental contributions, material dispersion and waveguide dispersion. Chromatic dispersion can be tailored through the design of the structural parameters of the device in order to obtain specific characteristics in the resulting dispersion profile such as low values of dispersion and/or zero dispersion at a desired wavelength, for example. This approach is very useful in dispersion-dependent applications. In this PhD, we investigate chromatic dispersion tailoring in two different transmission mediums, photonic integrated waveguides and optical fiber. In the first case, two different geometries of Silicon-on-Insulator (SOI) integrated waveguides, strip and slot, are considered. By varying structural parameters such as the cross-section, aspect ratio or fill factor, different chromatic dispersion profiles are obtained. In addition, the influence of the slot location is evaluated. This study is carried out using simulation software in order to obtain the effective refractive index profile as a function of wavelength, which is later differentiated to obtain the final dispersion values. Besides, chromatic dispersion in both waveguide geometries is experimentally measured using an interferometer technique. In the second case, the chromatic dispersion present in a tapered fiber is studied. A tapered fiber consists of a narrow waist located between two transition regions and it allows the modification of the conventional propagation conditions due to the interference between the modes propagating through the waist. This interference between modes creates a transmission pattern which depends on the waist length and the effective refractive indexes of the modes travelling through the waist. By applying stress to the tapered fiber its interference pattern can be modified. Chromatic dispersion profile of tapered fibers is obtained, tailored and compared with the dispersion profile of conventional single-mode fibers.[ES] Esta Tesis se centra en el estudio, implementación y caracterización del control de la dispersión cromática empleando tanto fibra óptica como guías integradas fotónicas. La dispersión cromática provoca que las distintas componentes espectrales asociadas con el pulso óptico viajen a diferentes velocidades. Este efecto puede ser dividido en sus dos contribuciones fundamentales, la dispersión del material y la dispersión de la guía. La dispersión cromática puede ser controlada a través del diseño de los parámetros estructurales del dispositivo para poder obtener así determinadas características en el perfil de dispersión resultante como por ejemplo bajos valores o localización de la longitud de onda de dispersión cero en una longitud de onda deseada. Este método es muy útil en aplicaciones dependientes de la dispersión. En esta Tesis, investigamos el control de la dispersión cromática en dos medios de transmisión diferentes, las guías fotónicas integradas y la fibra óptica. En el primer caso, se consideran dos geometrías diferentes de guías integradas en silicio, las guías convencionales y las guías ranuradas. Mediante la modificación de los parámetros estructurales como la sección transversal de la guía, su relación de aspecto o el factor de llenado, se obtienen diferentes perfiles de dispersión cromática. Además, se evalúa la influencia de la situación de la ranura. Mediante software de simulación, se obtiene el perfil de índice de refracción efectivo en función de la longitud de onda, que posteriormente se deriva y se obtiene el valor de la dispersión. Asimismo, se mide experimentalmente la dispersión en ambas geometrías utilizando una técnica interferométrica. En el segundo caso, se analiza la dispersión cromática que presenta una fibra de tipo taper. Esta geometría consiste en una cintura estrecha situada entre dos regiones de transición y permite la modificación de las condiciones de propagación convencionales debido a la interferencia entre los modos que se propagan por la cintura, que crea un patrón de transmisión dependiente de la longitud de la cintura y de los índices efectivos de los modos. Aplicando tensión sobre la fibra, su patrón de interferencia puede ser modificado. La dispersión cromática de las fibras taper se obtiene, se modifica y se compara con el perfil de dispersión de una fibra convencional.[CA] La tesi a exposar se centra en l'estudi, implementació i caracterització del control de la dispersió cromàtica empleant la fibra òptica i les guies integrades fotòniques. La dispersió cromàtica provoca que els distints components espectrals associats amb la pols òptica viatgen a diferents velocitats. Aquest pot dividir-se en les dos contribucions fonamentals corresponents: la dispersió del material i la dispersió de la guia. La dispersió cromàtica pot controlar-se a través del disseny dels paràmetres estructurals del dispositiu per poder obtindre aixi determinades característiques en el perfil de dispersió resultant, com per exemple, baixos valors o localizació de la longitud d'ona de dispersió zero a una longitud d'ona desitjada. No obstant això, aquest mètode és molt útil en aplicacions depenents de la dispersió. A més a més, investiguem el control de dispersió cromàtica en dos mitjans de transmissió diferents, les guies fotòniques integrades i la fibra òptica. D'una banda, es consideren dos geometries diferents de guies integrades en silici, les guies convencionals i les ranurades. Mitjançant la modificació dels paràmetres estructurals com la secció transversal de la guia, la relació d'apecte o el factor d'ompliment, obtenim diferents perfils de dispersió cromàtica. Fins i tot, s'avalua la influència de la situació de la ranura. Mitjançant el programari de simulació, obtenim el perfil d'índex de refracció efectiu en funció de la longitud d'ona, que posteriorment es derivarà i s'obrindrà el valor de la dispersió. Tanmateix, es mesura experimentalment la dispersió en les dos geometries utilitzant una tècnica interferomètrica. D'altra banda, analitzam la dispersió cromàtica que presenta una fibra de tipus taper. Aquesta consisteix en una cintura estreta situada entre dos regions de transició que, ens permet la modificació de les condicions de propagació convencional com a causa d'una interferència entre els modes que es propaguen per la cintura i els índex efectius dels modes. Si apliquem tensió sobre la fibra, el seu patró d'interferència podria ser modificat. La dispersió d'una fibra cromàtica de les fibres taper s'obté, es modific i es compara amb el perfil de dispersió d'una fibra convencional.Mas Gómez, SM. (2015). Dispersion tailoring in both integrated photonics and fiber-optic based devices [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/54113TESISCompendi

    Understanding the Radiation Effects on Fiber Optic Sensors

    Get PDF
    In this dissertation, the effects of radiation (gamma, neutron or mixed gamma and neutron) on optical fiber sensors are studied and new techniques for real-time measurement of radiation-induced macroscopic changes in optical fibers are presented. It is crucial among the research and development efforts in the nuclear energy field to conduct experiments in Advanced Test Reactor (ATR) to support lifetime extension, novel fuels and materials development, better fuel management, and enhanced safety of existing as well as future nuclear power plants (NPP). Due to their unparalleled and unique advantages over traditional sensors, optical fiber sensors are deemed potential candidates for their use in nuclear environments. However, optical fibers are susceptible to high levels of ionizing radiation emitted by fission reactors which are characterized by the highest levels of gamma dose, high flux of neutrons and potentially high temperatures depending on location in a reactor core. It is essential to accurately determine the information related to physical parameters such as temperature, pressure, and strain in nuclear environments for the safety of the existing and future NPPs. This dissertation starts with inverting a transmission mode long period grating (LPG) to reflection mode using a novel and cost-effective metal coating method since transmission mode LPG limits it applications in tight spaces or in nuclear fields. To understand the metal coating and metal coverage effects on the reflection spectrum of LPG, modeling work was performed, and it was validated by experimental work. We have shown that the sensitivity of LPGs to physical parameters in both transmission and reflection modes are almost the same. Next, we have modeled the radiation effects on different fiber optic sensors, proposed empirical models, and performed numerical analysis to understand the effects of nuclear environments on fiber optic sensors. We analyzed the real-time data from fiber Bragg gratings (FBGs) exposed to high neutron fluence and high temperature environments within the ATR at Idaho National Laboratory (INL). We have found that incoming radiation significantly drifts the characteristic signal of FBGs, leading to a temperature measurement error when FBGs are dedicated to temperature sensing. It is well known that neutron and gamma irradiation compacts silica optical fibers, resulting in a macroscopic change in the refractive index (RI) and geometric structure. The change in RI and linear compaction in a radiation environment is caused by three well-known mechanisms: (1) radiation induced attenuation (RIA), (2) radiation induced compaction (RIC), and (3) radiation induced emission (RIE). While RIA degrades the signal strength by creating different types of color centers in the silica fiber, RIC alters the density, and hence RI by displacing the host material atoms. However, Kramers-Kronig relation states that absorption, and hence the RIA, also modifies the RI of the silica fiber. Apart from RIA and RIC, other phenomena such as temperature, dose rate, stress relaxation, and dopant compositions exchange may change the RI. To overcome these problems, we have proposed an effective technique to measure the change in RI and compaction of optical fiber due to any specific phenomena the fiber is subjected to, including RIC, RIA, dopant diffusion, temperatures, dose, dose rate, etc. By knowing the individual contribution of RI and fiber length to the signal drift, it is possible to reduce the radiation induced signal drift in optical fiber sensors and provide accurate information regarding the temperature inside a radiation environment. Fission gas detection in nuclear environments is another important aspect that needs to be focused on. Pressure induced by fission gases during irradiation may lead to loss of coolant accident (LOCA), which can cause severe damage to the NPPs. We have modeled and fabricated optical fiber-based sensors to enable real-time monitoring of fission gases, which allows understanding the implications of fission gas release during an accident, important for safe and high performance
    corecore