461 research outputs found

    Fiber-optic interconnection networks for spacecraft

    Get PDF
    The overall goal of this effort was to perform the detailed design, development, and construction of a prototype 8x8 all-optical fiber optic crossbar switch using low power liquid crystal shutters capable of operation in a network with suitable fiber optic transmitters and receivers at a data rate of 1 Gb/s. During the earlier Phase 1 feasibility study, it was determined that the all-optical crossbar system had significant advantages compared to electronic crossbars in terms of power consumption, weight, size, and reliability. The result is primarily due to the fact that no optical transmitters and receivers are required for electro-optic conversion within the crossbar switch itself

    Holographic optical interconnects in dichromated gelatin

    Get PDF
    Abstract unavailable please refer to PD

    Optical computing: introduction by the guest editors to the feature in the 1 May 1988 issue

    Get PDF
    The feature in the 1 May 1988 issue of Applied Optics includes a collection of papers originally presented at the 1987 Lake Tahoe Topical Meeting on Optical Computing. These papers emphasize digital optical computing systems, optical interconnects, and devices for optical computing, but analog optical processing is considered as well

    Optical architectures for high performance switching and routing

    Get PDF
    This thesis investigates optical interconnection networks for high performance switching and routing. Two main topics are studied. The first topic regards the use of silicon microring resonators for short reach optical interconnects. Photonic technologies can help to overcome the intrinsic limitations of electronics when used in interconnects, short-distance transmissions and switching operations. This thesis considers the peculiarasymmetric losses of microring resonators since they pose unprecedented challenges for the design of the architecture and for the routing algorithms. It presents new interconnection architectures, proposes modifications on classical routing algorithms and achieves a better performance in terms of fabric complexity and scalability with respect to the state of the art. Subsequently, this thesis considers wavelength dimension capabilities of microring resonators in which wavelength reuse (i.e. crosstalk accumulation) presents impairments on the system performance. To this aim, it presents different crosstalk reduction techniques, a feasibility analysis for the design of microring resonators and a novel wavelength-agile routing matrix. The second topic regards flexible resource allocation with adaptable infrastructure for elastic optical networks. In particular, it focus on Architecture on Demand (AoD), whereby optical node architectures can be reconfigured on the fly according to traffic requirements. This thesis includes results on the first flexible-grid optical spectrum networking field trial, carried out in a collaboration with University of Essex. Finally, it addresses several challenges that present the novel concept AoD by means of modeling and simulation. This thesis proposes an algorithm to perform automatic architecture synthesis, reports AoD scalability and power consumption results working under the proposed synthesis algorithm. Such results validate AoD as a flexible node concept that provides power efficiency and high switching capacity

    Symmetric rearrangeable networks and algorithms

    Get PDF
    A class of symmetric rearrangeable nonblocking networks has been considered in this thesis. A particular focus of this thesis is on Benes networks built with 2 x 2 switching elements. Symmetric rearrangeable networks built with larger switching elements have also being considered. New applications of these networks are found in the areas of System on Chip (SoC) and Network on Chip (NoC). Deterministic routing algorithms used in NoC applications suffer low scalability and slow execution time. On the other hand, faster algorithms are blocking and thus limit throughput. This will be an acceptable trade-off for many applications where achieving ”wire speed” on the on-chip network would require extensive optimisation of the attached devices. In this thesis I designed an algorithm that has much lower blocking probabilities than other suboptimal algorithms but a much faster execution time than deterministic routing algorithms. The suboptimal method uses the looping algorithm in its outermost stages and then in the two distinct subnetworks deeper in the switch uses a fast but suboptimal path search method to find available paths. The worst case time complexity of this new routing method is O(NlogN) using a single processor, which matches the best known results reported in the literature. Disruption of the ongoing communications in this class of networks during rearrangements is an open issue. In this thesis I explored a modification of the topology of these networks which gives rise to what is termed as repackable networks. A repackable topology allows rearrangements of paths without intermittently losing connectivity by breaking the existing communication paths momentarily. The repackable network structure proposed in this thesis is efficient in its use of hardware when compared to other proposals in the literature. As most of the deterministic algorithms designed for Benes networks implement a permutation of all inputs to find the routing tags for the requested inputoutput pairs, I proposed a new algorithm that can work for partial permutations. If the network load is defined as ρ, the mean number of active inputs in a partial permutation is, m = ρN, where N is the network size. This new method is based on mapping the network stages into a set of sub-matrices and then determines the routing tags for each pair of requests by populating the cells of the sub-matrices without creating a blocking state. Overall the serial time complexity of this method is O(NlogN) and O(mlogN) where all N inputs are active and with m < N active inputs respectively. With minor modification to the serial algorithm this method can be made to work in the parallel domain. The time complexity of this routing algorithm in a parallel machine with N completely connected processors is O(log^2 N). With m active requests the time complexity goes down to (logmlogN), which is better than the O(log^2 m + logN), reported in the literature for 2^0.5((log^2 -4logN)^0.5-logN)<= ρ <= 1. I also designed multistage symmetric rearrangeable networks using larger switching elements and implement a new routing algorithm for these classes of networks. The network topology and routing algorithms presented in this thesis should allow large scale networks of modest cost, with low setup times and moderate blocking rates, to be constructed. Such switching networks will be required to meet the bandwidth requirements of future communication networks

    Control Plane Hardware Design for Optical Packet Switched Data Centre Networks

    Get PDF
    Optical packet switching for intra-data centre networks is key to addressing traffic requirements. Photonic integration and wavelength division multiplexing (WDM) can overcome bandwidth limits in switching systems. A promising technology to build a nanosecond-reconfigurable photonic-integrated switch, compatible with WDM, is the semiconductor optical amplifier (SOA). SOAs are typically used as gating elements in a broadcast-and-select (B\&S) configuration, to build an optical crossbar switch. For larger-size switching, a three-stage Clos network, based on crossbar nodes, is a viable architecture. However, the design of the switch control plane, is one of the barriers to packet switching; it should run on packet timescales, which becomes increasingly challenging as line rates get higher. The scheduler, used for the allocation of switch paths, limits control clock speed. To this end, the research contribution was the design of highly parallel hardware schedulers for crossbar and Clos network switches. On a field-programmable gate array (FPGA), the minimum scheduler clock period achieved was 5.0~ns and 5.4~ns, for a 32-port crossbar and Clos switch, respectively. By using parallel path allocation modules, one per Clos node, a minimum clock period of 7.0~ns was achieved, for a 256-port switch. For scheduler application-specific integrated circuit (ASIC) synthesis, this reduces to 2.0~ns; a record result enabling scalable packet switching. Furthermore, the control plane was demonstrated experimentally. Moreover, a cycle-accurate network emulator was developed to evaluate switch performance. Results showed a switch saturation throughput at a traffic load 60\% of capacity, with sub-microsecond packet latency, for a 256-port Clos switch, outperforming state-of-the-art optical packet switches

    High capacity photonic integrated switching circuits

    Get PDF
    As the demand for high-capacity data transfer keeps increasing in high performance computing and in a broader range of system area networking environments; reconfiguring the strained networks at ever faster speeds with larger volumes of traffic has become a huge challenge. Formidable bottlenecks appear at the physical layer of these switched interconnects due to its energy consumption and footprint. The energy consumption of the highly sophisticated but increasingly unwieldy electronic switching systems is growing rapidly with line rate, and their designs are already being constrained by heat and power management issues. The routing of multi-Terabit/second data using optical techniques has been targeted by leading international industrial and academic research labs. So far the work has relied largely on discrete components which are bulky and incurconsiderable networking complexity. The integration of the most promising architectures is required in a way which fully leverages the advantages of photonic technologies. Photonic integration technologies offer the promise of low power consumption and reduced footprint. In particular, photonic integrated semiconductor optical amplifier (SOA) gate-based circuits have received much attention as a potential solution. SOA gates exhibit multi-terahertz bandwidths and can be switched from a high-gain state to a high-loss state within a nanosecond using low-voltage electronics. In addition, in contrast to the electronic switching systems, their energy consumption does not rise with line rate. This dissertation will discuss, through the use of different kind of materials and integration technologies, that photonic integrated SOA-based optoelectronic switches can be scalable in either connectivity or data capacity and are poised to become a key technology for very high-speed applications. In Chapter 2, the optical switching background with the drawbacks of optical switches using electronic cores is discussed. The current optical technologies for switching are reviewed with special attention given to the SOA-based switches. Chapter 3 discusses the first demonstrations using quantum dot (QD) material to develop scalable and compact switching matrices operating in the 1.55µm telecommunication window. In Chapter 4, the capacity limitations of scalable quantum well (QW) SOA-based multistage switches is assessed through experimental studies for the first time. In Chapter 5 theoretical analysis on the dependence of data integrity as ultrahigh line-rate and number of monolithically integrated SOA-stages increases is discussed. Chapter 6 presents some designs for the next generation of large scale photonic integrated interconnects. A 16x16 switch architecture is described from its blocking properties to the new miniaturized elements proposed. Finally, Chapter 7 presents several recommendations for future work, along with some concluding remark
    corecore