441 research outputs found

    Mode group diversity multiplexing in multimode fiber transmission systems

    Get PDF

    Mode division multiplexing zero forcing equalisation scheme using LU factorization

    Get PDF
    Optical networks is considered as the main backbone networks that handled the Internet traffic worldwide. Currently, the Internet traffic has had huge annual growth due to the increment in connected devices. At this rate, it is believed that the current technology in optical network will not able to handle this growth in the near future. Till recently, multiplexing techniques in the optical communication rely on modulation techniques where polarization, amplitude and frequency of the signal are used as the main data carrier. In these techniques, light modes are considered as an undesired effect causing modal dispersion. In contrast, mode division multiplexing (MDM) was introduced as a multiplexing approach which relies on the utilization of the light modes for the benefit of increasing the capacity-distance product of the optical network. As per any new technology, it is still facing a lot of problems preventing it from being commercially standardized and used. One of the main MDM issues is the mode coupling, which is an inventible phenomena occurs when the energy of one mode transfers to another mode during their propagation throughout the optical fibre causes inter-symbol interference (ISI), increasing the bit error rate (BER) and reducing the overall system performance. Different equalization schemes have been proposed so far attempting to mitigate the effect of mode coupling on the MDM optical signal. However, they suffer from high computational complexity and rely on training signals in estimating the optical channel which increases the overhead payload. These technique mainly rely on Least Mean Squared (LMS) and Recursive Least Squared (RLS) algorithms. The purpose of this study is to introduce a Zero Forcing LU-based equalization scheme for MDM. Previous research in the radio domain on multiple-input multiple output (MIMO) and orthogonal frequency division multiplexing (OFDM) demonstrated that zero forcing schemes have low computational complexity compared to current schemes as they equalize the signal without training signals, thus reducing the overhead payload. All of the previous points motivate the work of this study to adapt this approach in optical communications. The study adopts the four stages of the Design Research Methodology (DRM). The initial data was collected from the optical simulator, processed and used to derive the transfer function (H) of the system. Then it was used to develop the equalization scheme in MATLAB. The experimentation on Zero Forcing LU based equalization scheme shows O(N) complexity which is lower than RLS which has O(N2) and faster than LMS, in fact, LMS needs an average of 0.0126 seconds to process the signal while ZF LU-based needs 0.0029 seconds only. On the other hand, the proposed equalization reduces the time delay spread of the channel, resulting three times increment in the capacity of the MDM channel and even lower computational complexity. The main contribution of this study is the reduction of the computational complexity of the previous equalization schemes in MDM. Applying this scheme in real MDM systems can produce more cost effective and smaller digital signal processing (DSP) parts for MDM equipment and can accelerate the work on the standardization of MDM for being commercially used as a multiplexing technique for optical communication networks

    On a Scalable Path for Multimode SDM Transmission

    Get PDF
    We investigate transceiver design and digital signal processing for spatially multiplexed transmission over multimode fibers. In conventional architectures, the full spatial domain of the transmission fiber has to be detected and processed such that the modal walk-off and mixture can be estimated and equalized. These architectures scale poorly with the number of modes supported, besides the sparsity of the fiber transfer matrix is not fully exploited. Instead, here we aim to employ selective mode vector launch and detection in order to minimize the number of optical front-ends required. In this case, an ideal basis for multiplexing is offered by principal modes, that to first order are frequency independent. We show that such mode vector basis can be used for full baud rate transmission over inter-data center distances despite limited coherence bandwidth and vulnerability to environmental-induced drift of the optical channel. It is shown that crosstalk at the receiver front-end can be significantly suppressed, critically reducing the number of coherent receiver front-ends to that of spatial tributaries aimed for data transmission - as opposed to the total number of fiber modes. Residual crosstalk can still be experienced due to environmental-induced channel drift and loss of orthogonality in presence of mode dependent loss. Multiple-input single-output digital signal processing is shown to be effective in this case, with the required equalizer array size scaling sub-linearly with the number of tributaries. A multimode fiber with 156 spatial and polarization modes and optimized for low modal dispersion is considered

    Optical devices and subsystems for few- and multi-mode fiber based networks

    Get PDF

    Mode-Multiplexed Transmission over Conventional Graded-Index Multimode Fibers

    Get PDF
    We present experimental results for combined mode-multiplexed and wavelength multiplexed transmission over conventional graded-index multimode fibers. We use mode-selective photonic lanterns as mode couplers to precisely excite a subset of the modes of the multimode fiber and additionally to compensate for the differential group delay between the excited modes. Spatial mode filters are added to suppress undesired higher order modes. We transmit 30-Gbaud QPSK signals over 60 WDM channels, 3 spatial modes, and 2 polarizations, reaching a distance of 310 km based on a 44.3 km long span. We also report about transmission experiments over 6 spatial modes for a 17-km single-span experiment. The results indicate that multimode fibers support scalable mode-division multiplexing approaches, where modes can be added over time if desired. Also the results indicate that mode-multiplexed transmission distance over 300 km are possible in conventional multimode fibers

    Spatially integrated erbium-doped fiber amplifiers enabling space-division multiplexing

    Get PDF
    L'augmentation exponentielle de la demande de bande passante pour les communications laisse présager une saturation prochaine de la capacité des réseaux de télécommunications qui devrait se matérialiser au cours de la prochaine décennie. En effet, la théorie de l’information prédit que les effets non linéaires dans les fibres monomodes limite la capacité de transmission de celles-ci et peu de gain à ce niveau peut être espéré des techniques traditionnelles de multiplexage développées et utilisées jusqu’à présent dans les systèmes à haut débit. La dimension spatiale du canal optique est proposée comme un nouveau degré de liberté qui peut être utilisé pour augmenter le nombre de canaux de transmission et, par conséquent, résoudre cette menace de «crise de capacité». Ainsi, inspirée par les techniques micro-ondes, la technique émergente appelée multiplexage spatial (SDM) est une technologie prometteuse pour la création de réseaux optiques de prochaine génération. Pour réaliser le SDM dans les liens de fibres optiques, il faut réexaminer tous les dispositifs intégrés, les équipements et les sous-systèmes. Parmi ces éléments, l'amplificateur optique SDM est critique, en particulier pour les systèmes de transmission pour les longues distances. En raison des excellentes caractéristiques de l'amplificateur à fibre dopée à l'erbium (EDFA) utilisé dans les systèmes actuels de pointe, l'EDFA est à nouveau un candidat de choix pour la mise en œuvre des amplificateurs SDM pratiques. Toutefois, étant donné que le SDM introduit une variation spatiale du champ dans le plan transversal de la fibre, les amplificateurs à fibre dopée à l'erbium spatialement intégrés (SIEDFA) nécessitent une conception soignée. Dans cette thèse, nous examinons tout d'abord les progrès récents du SDM, en particulier les amplificateurs optiques SDM. Ensuite, nous identifions et discutons les principaux enjeux des SIEDFA qui exigent un examen scientifique. Suite à cela, la théorie des EDFA est brièvement présentée et une modélisation numérique pouvant être utilisée pour simuler les SIEDFA est proposée. Sur la base d'un outil de simulation fait maison, nous proposons une nouvelle conception des profils de dopage annulaire des fibres à quelques-modes dopées à l'erbium (ED-FMF) et nous évaluons numériquement la performance d’un amplificateur à un étage, avec fibre à dopage annulaire, à ainsi qu’un amplificateur à double étage pour les communications sur des fibres ne comportant que quelques modes. Par la suite, nous concevons des fibres dopées à l'erbium avec une gaine annulaire et multi-cœurs (ED-MCF). Nous avons évalué numériquement le recouvrement de la pompe avec les multiples cœurs de ces amplificateurs. En plus de la conception, nous fabriquons et caractérisons une fibre multi-cœurs à quelques modes dopées à l'erbium. Nous réalisons la première démonstration des amplificateurs à fibre optique spatialement intégrés incorporant de telles fibres dopées. Enfin, nous présentons les conclusions ainsi que les perspectives de cette recherche. La recherche et le développement des SIEDFA offriront d'énormes avantages non seulement pour les systèmes de transmission future SDM, mais aussi pour les systèmes de transmission monomode sur des fibres standards à un cœur car ils permettent de remplacer plusieurs amplificateurs par un amplificateur intégré.The exponential increase of communication bandwidth demand is giving rise to the so-called ‘capacity crunch’ expected to materialize within the next decade. Due to the nonlinear limit of the single mode fiber predicted by the information theory, all the state-of-the-art techniques which have so far been developed and utilized in order to extend the optical fiber communication capacity are exhausted. The spatial domain of the lightwave links is proposed as a new degree of freedom that can be employed to increase the number of transmission paths and, subsequently, overcome the looming ‘capacity crunch’. Therefore, the emerging technique named space-division multiplexing (SDM) is a promising candidate for creating next-generation optical networks. To realize SDM in optical fiber links, one needs to investigate novel spatially integrated devices, equipment, and subsystems. Among these elements, the SDM amplifier is a critical subsystem, in particular for the long-haul transmission system. Due to the excellent features of the erbium-doped fiber amplifier (EDFA) used in current state-of-the-art systems, the EDFA is again a prime candidate for implementing practical SDM amplifiers. However, since the SDM introduces a spatial variation of the field in the transverse plane of the optical fibers, spatially integrated erbium-doped fiber amplifiers (SIEDFA) require a careful design. In this thesis, we firstly review the recent progress in SDM, in particular, the SDM optical amplifiers. Next, we identify and discuss the key issues of SIEDFA that require scientific investigation. After that, the EDFA theory is briefly introduced and a corresponding numerical modeling that can be used for simulating the SIEDFA is proposed. Based on a home-made simulation tool, we propose a novel design of an annular based doping profile of few-mode erbium-doped fibers (FM-EDF) and numerically evaluate the performance of single stage as well as double-stage few-mode erbium-doped fiber amplifiers (FM-EDFA) based on such fibers. Afterward, we design annular-cladding erbium-doped multicore fibers (MC-EDF) and numerically evaluate the cladding pumped multicore erbium-doped fiber amplifier (MC-EDFA) based on these fibers as well. In addition to fiber design, we fabricate and characterize a multicore few-mode erbium-doped fiber (MC-FM-EDF), and perform the first demonstration of the spatially integrated optical fiber amplifiers incorporating such specialty doped fibers. Finally, we present the conclusions as well as the perspectives of this research. In general, the investigation and development of the SIEDFA will bring tremendous benefits not only for future SDM transmission systems but also for current state-of-the-art single-mode single-core transmission systems by replacing plural amplifiers by one integrated amplifier

    Multiplexage par division modale pour les applications à courte distance

    Get PDF
    Le multiplexage par division de mode (MDM) a reçu une attention considérable de la part des chercheurs au cours des dernières années. La principale motivation derrière l'utilisation de différents modes de fibre optique est d'augmenter la capacité des réseaux de transport. Les expériences initiales ont montré une grande complexité dans le traitement de signal (DSP) du récepteur. Dans cette thèse, nous étudions la viabilité et les défis de la transmission de données sur des fibres à quelques modes (FMF) pour des systèmes MDM à complexité de DSP réduite. Nos études comprennent à la fois une transmission de données cohérente et non cohérente. Dans notre première contribution, nous démontrons, pour la première fois, la transmission de données sur 4 canaux dans une nouvelle fibre OAM sans démultiplexage de polarisation optique. Nous utilisons une complexité de DSP réduite: deux jeux d'égaliseurs MIMO (multiple-input multiple-output) 2 × 2 au lieu d'un bloc égaliseur MIMO 4 × 4 complet. Nous proposons un nouveau démultiplexeur de mode permettant de recevoir simultanément deux polarisations d'un mode et de réaliser électriquement un démultiplexage de polarisation dans le récepteur DSP. Nous étudions également la pénalité OSNR due aux imperfections dans le démultiplexeur de mode et nous examinons la vitesse de transmission maximum accessible pour notre système. Dans notre deuxième contribution, nous étudions les dégradations modales dans les systèmes OAM-MDM, en nous concentrant sur leur effet sur la performance et la complexité du récepteur. Dans notre étude expérimentale, nous discutons pour la première fois de l'impact de deux modes non porteurs de données sur les canaux de données véhiculés par les modes OAM. Deux types différents de fibres OAM sont étudiés. Nous caractérisons notre liaison MDM en utilisant les techniques de mesure du temps de vol et de réponse impulsionnelle. Nous discutons des conclusions des résultats de caractérisation en étudiant l'impact des interactions modales sur la complexité de l'égaliseur du récepteur pour différents scénarios de transmission de données. Dans le troisième chapitre, nous étudions un nouveau FMF à maintien de polarisation et conduisons deux séries d'expériences de transmission de données cohérentes et de radio sur fibre (RoF). Nous démontrons pour la première fois, la transmission de données sans MIMO sur six et quatre canaux dans les systèmes cohérents et RoF, respectivement. Nous démontrons également, pour la première fois, la transmission de données RoF sur deux polarisations d'un mode dans une FMF. Nous discutons de la dégradation des performances due à la diaphonie dans de tels systèmes. Nous étudions également l'impact de la courbure sur cette fibre dans un contexte de RoF. La propriété de maintien de polarisation de cette fibre sous courbure est étudiée à la fois par des expériences de caractérisation et de transmission de données.Mode division multiplexing (MDM) has received extensive attention by researchers in the last few years. The main motivation behind using different modes of optical fiber is to increase the capacity of transport networks. Initial experiments showed high complexity in DSP of the receiver. In this thesis, we investigate the viability and challenges for data transmission over specially designed few mode fibers (FMF) for MDM systems with reduced DSP. Our studies include both coherent and non-coherent data transmission. In our first contribution, we demonstrate, for the first time, data transmission over 4 channels in a novel OAM fiber without optical polarization demultiplexing. We use reduced DSP complexity: two sets of 2×2 multiple-input multiple-output (MIMO) equalizers instead of a full 4×4 MIMO equalizer block. We propose a novel mode demultiplexer enabling us to receive two polarizations of a mode simultaneously and conducting polarization demultiplexing electrically in receiver DSP. We also investigate the OSNR penalty due to imperfections in the mode demultiplexer and we examine the maximum reachable baud rate for our system. In our second contribution, we study the modal impairments in OAM-MDM systems, focusing on their effect on receiver performance and complexity. In our experimental study, for the first time, we discuss the impact of two non-data carrying modes on data channels carried by OAM modes. Two different types of OAM fibers are studied. We characterize our MDM link using time-of-flight and impulse response measurement techniques. We discuss conclusions from characterization results with studies of the impact of modal interactions on receiver equalizer complexity for different data transmission scenarios . In the third contribution, we study a novel polarization-maintaining FMF and conduct two sets of coherent data transmission and non-coherent radio over fiber (RoF) experiments. We demonstrate for the first time, MIMO –Free data transmission over six and four channels in coherent and RoF systems, respectively. We also demonstrate, for the first time, RoF data transmission over two polarizations of a mode in a FMF. We discuss the performance degradation due to crosstalk in such systems. We also study the impact of bending on this fiber in RoF context. The polarization maintaining property of this fiber under bending is studied both via characterization and data transmission experiments

    Space Division Multiplexing in Optical Fibres

    Full text link
    Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fibre. In this search, researchers have explored (and close to maximally exploited) every available degree of freedom, and even commercial systems now utilize multiplexing in time, wavelength, polarization, and phase to speed more information through the fibre infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibres can easily support hundreds of spatial modes, but today's commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals.Comment: to appear in Nature Photonic

    Green Femtocell Based on UWB Technologies

    Get PDF
    • …
    corecore