1,448 research outputs found

    Review of Fiber Optic Displacement Sensors

    Get PDF
    Displacement Measurements Are of Significant Importance in a Variety of Critical Scientific and Engineering Fields, Such as Gravitational Wave Detection, Geophysical Research, and Manufacturing Industries. Due to the Inherent Advantages Such as Compactness, High Sensitivity, and Immunity to Electromagnetic Interference, in Recent Years, Fiber Optic Sensors Have Been Widely Used in an Expansive Range of Sensing Applications, Ranging from Infrastructural Health Monitoring to Chemical and Biological Sensing. of Particular Interest Here, Fiber Optic Displacement Sensors Have Gained Wide Interest and Have Evolved from Basic Intensity Modulation-Based Configurations to More Advanced Structures, Such as Fiber Bragg Grating (FBG)-Based and Interferometric Configurations. This Article Reviews Specifically the Advanced Fiber Optic Displacement Sensing Techniques that Have Been Developed in the Past Two Decades. Details Regarding the Working Principle, Sensor Design, and Performance Measures of FBG-Based, Interferometers-Based (Including the Fabry-Perot Interferometer, the Michelson Interferometer, and the Multimode Interferometer), Microwave Photonics-Based, and Surface Plasmon Resonance-Based Fiber Optic Displacement Sensors Are Given. Challenges and Perspectives on Future Research in the Development of Practical and High-Temperature Tolerant Displacement Sensors Are Also Discussed

    Advances in Fiber-Optic Extrinsic Fabry-Perot Interferometric Physical and Mechanical Sensors: A Review

    Get PDF
    Fabry-Perot Interferometers Have Found a Multitude of Scientific and Industrial Applications Ranging from Gravitational Wave Detection, High-Resolution Spectroscopy, and Optical Filters to Quantum Optomechanics. Integrated with Optical Fiber Waveguide Technology, the Fiber-Optic Fabry-Perot Interferometers Have Emerged as a Unique Candidate for High-Sensitivity Sensing and Have Undergone Tremendous Growth and Advancement in the Past Two Decades with their Successful Applications in an Expansive Range of Fields. the Extrinsic Cavity-Based Devices, I.e., the Fiber-Optic Extrinsic Fabry-Perot Interferometers (EFPIs), Enable Great Flexibility in the Design of the Sensitive Fabry-Perot Cavity Combined with State-Of-The-Art Micromachining and Conventional Mechanical Fabrication, Leading to the Development of a Diverse Array of EFPI Sensors Targeting at Different Physical Quantities. Here, We Summarize the Recent Progress of Fiber-Optic EFPI Sensors, Providing an overview of Different Physical and Mechanical Sensors based on the Fabry-Perot Interferometer Principle, with a Special Focus on Displacement-Related Quantities, Such as Strain, Force, Tilt, Vibration and Acceleration, Pressure, and Acoustic. the Working Principle and Signal Demodulation Methods Are Shown in Brief. Perspectives on Further Advancement of EFPI Sensing Technologies Are Also Discussed

    Phase sensitive low-coherence interferometry using microwave

    Get PDF
    We report on a low-coherence interferometer based on Microwave Photonics (MWP) which allows, for the first time to the best of our knowledge, stable determination of the interferogram’s phase. The interferometer is built on suppressed carrier, double-sideband modulation, dispersive propagation in a chirped fiber Bragg grating, demodulation by electrooptical frequency down-conversion, and suitable signal processing techniques to account for modulation impairments. Taking as a reference a direct normalization of the link’s microwave response, the system retrieves high-resolution interferograms, both in amplitude and phase and free from distortion induced by higher-order dispersion, in an optical path difference of 16.3 mm, surpassing previously reported values based on MWP implementations. We present representative applications targeted to the characterization of C-band sources and components, such as direct analysis of interferograms with 5.5 fs temporal resolution, Fourier-transform spectroscopy with 14 GHz spectral resolution, and optical low-coherence reflectrometry of the impulse response’s amplitude of fiber Bragg gratings with 0.55 m spatial resolution

    Semiconductor laser dynamics induced by optical feedback for photonic microwave sensing

    Get PDF
    As one of the most widely used light sources today, semiconductor lasers (SLs) are an important part of many optical systems, especially for sensing, communications, metrology, and storage applications. SLs have the advantages of small size, easy integration, and miniaturization. The massification of electronic devices has furthered this agenda, allowing the creation of portable systems capable of supporting optical sensing systems. Essentially, SLs are inherently nonlinear devices, in nonlinear systems, the folding and stretching behaviors of variables result in di↵erent dynamical routes. It is worth noting that under the conditions of a stable operation, an SL biased by constant current usually emits laser light with a constant intensity. However, with the introduction of external optical feedback (OF), the laser light can become unstable. SL will undergo from steady state, switching status, to period-one (P1) oscillation by crossing Hopf-bifurcation. In the P1 state, the system produces a modulation of the laser optical output power for the generation of microwave photonics (MWP) signals. In this thesis, we operate SL with OF scheme in P1 dynamics, and found that the proposed system has the great capability to achieve both displacement and absolute distance sensing applications with high resolution and wide measurement range, by using time-frequency information, relaxation oscillation information, and nonlinear dynamic characteristics carried in that SLs emit signals. The contributions of each chapter in this thesis are described in the following: In Chapter 3, we propose an SL with OF set at the P1 dynamics to generate the MWP signal for displacement sensing. Di↵erent from the traditional MWP generation method, the designed laser nonlinear dynamics are used by slightly perturbing the SL source with the help of external feedback light to make the system work in the P1 dynamic state, thereby generating regular microwave oscillation. By using the fourth-order Runge-Kutta method to numerically solve the famous Lang-Kobayashi differential equation, the boundary of di↵erent laser dynamic states is delimited, so that the system can generate stable and sustainable MWP signals in P1 dynamics. A set of parameter selection rules for designing an SL based MWP displacement sensing system is obtained. In addition, a measurement algorithm for recovering the displacement from an MWP sensing signal is developed. By making full use of the sensing information carried in both amplitude and frequency of the MWP signal, displacement sensing with high resolution and high sensitivity can be achieved. Both simulations and experiments are conducted to verify the proposed method and show it is capable of realizing high measurement sensitivity, and high resolution for displacement sensing. In Chapter 4, utilizing the rich nonlinear dynamics of an SL with OF, under the proper controllable system parameters, the system enters the P1 dynamics through Hopf-bifurcation. In the P1 state, the detailed relationship between the relaxation oscillation frequency of MWP signals and external cavity length is studied through solving the Lang-Kobayashi delayed di↵erential equations. The displacement measurement formula is thus obtained. In addition, the relevant signal processing algorithm is developed by considering mode-hopping, frequency-hopping, and sawtooth-like phenomena that occurred in the relaxation oscillation. The displacement measurement can be enhanced in a wider sensing range by fully using the relaxation oscillation frequency relationship. Verification results in simulation and experiment show that the proposed MWP displacement sensing system based on SL with OF contributes to designing a prototype of a compact displacement sensor with wide measurement range and high resolution. In Chapter 5, OF induced switching status between two nonlinear dynamic states (stable and P1 states) is observed in the SL with OF system. Without the need for any electronic or optical modulation devices, the laser intensity can be modulated in a square wave form due to the switching via utilizing the inherent SL dynamics near Hopf-bifurcation boundary. The periodicity in the switching enables us to develop a new approach for long-distance sensing compared to other SL with OF based absolute distance measurement systems and lift the relevant restrictions that existed in the systems. Moreover, the impact of system controllable parameters on the duty cycle of the square wave signals generated was investigated as well, aiming to maintain the proposed system robustly operating at the switching status

    High-Sensitivity Optical Fiber Sensing based on a Computational and Distributed Vernier Effect

    Get PDF
    This article reports a novel concept of computational microwave photonics and distributed Vernier effect for sensitivity enhancement in a distributed optical fiber sensor based on an optical carrier microwave interferometry (OCMI) system. The sensor system includes a Fabry-Perot interferometer (FPI) array formed by cascaded fiber in-line reflectors. Using OCMI interrogation, information on each of the interferometers (i.e., sensing interferometers) can be obtained, from which an array of reference interferometers can be constructed accordingly. By superimposing the interferograms of each sensing interferometer and its corresponding reference interferometer, distributed Vernier effect can be generated, so that the measurement sensitivity of each of the sensing interferometers can be amplified individually. This technique is achieved entirely in software without any physical modification to the system and negates the need to carefully fabricate the reference interferometer to obtain the desired magnification factor, as is often the case for traditional Vernier effect-based optical fiber sensors. Importantly, the reference interferometers can be flexibly constructed such that the magnification factor for each sensing interferometer can be precisely and easily controlled. The operating principle is illustrated in detail, followed by a proof of concept. The experimental results match well with theoretical predictions

    Microwave Photonics for Distributed Sensing

    Get PDF
    In the past few years, microwave-photonics technologies have been investigated for optical fiber sensing. By introducing microwave modulation into the optical system, the optical detection is synchronized with the microwave modulation frequency. As a result, the system has a high SNR and thus an improved detection limit. In addition, the phase of the microwave-modulated light can be obtained and Fourier transformed to find the time-of-arrival information for distributed sensing. Recently, an incoherent optical-carrier-based microwave interferometry (OCMI) technique has been demonstrated for fully distributed sensing with high spatial resolution and large measurement range. Since the modal interference has little influence on the OCMI signal, the OCMI is insensitive to the types of optical waveguide. Motivated by the needs of distributed measurement in the harsh environment, in the first part of this paper, several OCMI-based sensing systems were built by using special multimode waveguides to perform sensing for heavy duty applications. Driven by an interest on the high-resolution sensing, in the second part of the paper, I propose a coherence-gated microwave photonics interferometry (CMPI) technique, which uses a coherent light source to obtain the optical interference signal from cascaded weak reflectors. The coherence length of the light source is carefully chosen or controlled to gate the signal so that distributed sensing can be achieved. The experimental results indicate that the strain resolution can be better than 0.6 µε using a Fabry-Perot interferometer (FPI) with a cavity length of 1.5 cm. Further improvement of the strain resolution to the 1 nε level is achievable by increasing the cavity length of the FPI to over 1m. The CMPI has also been utilized for distributed dynamic measurement of vibration by using a new signal processing method. The fast time-varying optical interference intensity change induced by the sub-scan rate vibration is recorded in the frequency domain. After Fourier transform, distinctive features are shown at the vibration location in the time domain signal, where the vibration frequency and intensity can be retrieved. The signal processing method supports vibration measurement of multiple points with the measurable frequency of up to 20 kHz

    Design of optical fiber sensors and interrogation schemes

    Full text link
    [ES] Las fibras ópticas son dispositivos muy utilizados en el campo de las telecomunicaciones desde su descubrimiento. En las últimas décadas, las fibras ópticas comenzaron a utilizarse como sensores fotónicos. Los primeros trabajos se centraron en la medición de unas dimensiones físicas en un punto específico. Posteriormente, surgió la posibilidad de medir las propiedades de la fibra óptica en diferentes puntos a lo largo de la fibra. Este tipo de sensores se definen como sensores distribuidos. Los componentes optoelectrónicos fueron desarrollados e investigados para telecomunicaciones. Los avances en las telecomunicaciones hicieron posible el desarrollo de sistemas de interrogación para sensores de fibra óptica, creciendo en paralelo con los avances de las telecomunicaciones. Se desarrollaron sistemas de interrogación de fibra óptica que permiten el uso de una única fibra óptica monomodo estándar como sensor que puede monitorear decenas de miles de puntos de detección al mismo tiempo. Los métodos que extraen la información de detección de la señal reflejada en la fibra óptica son los más empleados debido a la facilidad de acceso al sensor y la flexibilidad de estos sistemas. Los más estudiados son la reflectometría en dominios de tiempo y frecuencia. La reflectometría óptica en el dominio del tiempo (OTDR) fue la primera técnica utilizada para detectar la posición de los fallos en las redes de comunica-ción de fibra óptica. El OTDR sensible a la fase hizo posible detectar la elongación y la temperatura en una posición específica. Paralelamente, los gratings de Bragg (FBG) se convirtieron en los dispositivos más utilizados para implementar sensores en fibra óptica discretos. Se desarrollaron técnicas de multiplexación para realizar la detección en múltiples puntos utilizando FGBs. La reflectometría realizada interrogando arrays de FBG débiles demuestra que mejora el rendimiento del sistema en comparación al uso de una fibra monomodo. Los sistemas de interrogatorio actuales tienen algunos inconvenientes. Algunos de ellos son velocidad de interrogatorio limitada, grandes dimensiones y alto costo. En esta tesis doctoral se desarrollaron nuevos sistemas de interrogación y sensores de fibra óptica para superar algunos de estos inconvenientes. Los sensores de fibra óptica de plástico demuestran ser una plataforma innovadora para desarrollar nuevos sensores y sistemas de interrogación de bajo costo y fáciles de implementar para fibras de plástico comerciales. Se investigó la reflectometría en el dominio del tiempo y las técnicas fotónicas de microondas para la interrogación de una matriz de rejillas débiles que permitieron simplificar el sistema de interrogación para la detección de temperatura y vibración.[CA] Les fibres òptiques són dispositius molt utilitzats en el camp de les telecomunica-cions des del seu descobriment. En les últimes dècades, les fibres òptiques van començar a utilitzar-se com a sensors fotònics. Els primers treballs es van centrar en el mesurament d'unes dimensions físiques en un punt específic. Posteriorment, va sorgir la possibilitat de mesurar les propietats de la fibra òptica en diferents punts al llarg de la fibra. Aquest tipus de sensors es defineixen com a sensors distribüits. Els components optoelectrònics van ser desenvolupats i investigats per a telecomunicacions. Els avanços en les telecomunicacions van fer possi-ble el desenvolupament de sistemes d'interrogació per a sensors de fibra òptica, creixent en paral·lel amb els avanços de les telecomunicacions. Es van desenvolupar sistemes d'interrogació de fibra òptica que permeten l'ús d'una única fibra òptica monomodo estàndard com a sensor que pot monitorar desenes de milers de punts de detecció al mateix temps. Els mètodes que extreuen la informació de detecció del senyal reflectit en la fibra òptica són els més utilitzats a causa de la facilitat d'accés al sensor i la flexibilitat d'aquests sistemes. Els més estudiats són la reflectometría en dominis de temps i freqüència. La reflectometría òptica en el domini del temps (OTDR) va ser la primera tècnica utilitzada per a detectar la posició de les fallades en les xarxes de comunicació de fibra òptica. El OTDR sensible a la fase va fer possible detectar l'elongació i la temperatura en una posició específica. Paral·lelament, els gratings de Bragg (FBG) es van convertir en els dispositius més utilitzats per a implementar sensors en fibra òptica discrets. Es van desenvolupar tècniques de multiplexació per a realitzar la detecció en múltiples punts utilitzant FGBs. La reflectometría realitzada interrogant arrays de FBG febles demostra que millora el rendiment del sistema en comparació a l'ús d'una fibra monomodo. Els sistemes d'interrogatori actuals tenen alguns inconvenients. Alguns d'ells són velocitat d'interrogatori limitada, voluminositat i alt cost. En aquesta tesi doctoral es van desenvolupar nous sistemes d'interrogació i sensors de fibra òptica per a superar alguns d'aquests inconvenients. Els sensors de fibra òptica de plàstic demostren ser una plataforma innovadora per a desenvolupar nous sensors i siste-mes d'interrogació de baix cost i fàcils d'implementar per a fibres de plàstic comercials. Es va investigar la reflectometría en el domini del temps i les tècniques fotòniques de microones per a la interrogació d'una matriu de reixetes febles que van permetre simplificar el sistema d'interrogació per a la detecció de temperatura i vibració.[EN] Optical fibers are devices largely used in telecommunication field since their discovery. In the last decades, optical fibers started to be used as photonic sensors. The first works were focused on the measurement of physical dimensions to a specific point. Afterward, emerged the possibility to measure the optical fiber properties at different locations along the fiber. These kinds of sensors are defined as distributed sensors. The optoelectronic components were developed and investigated for telecommunications. The progress in telecommunication made possible the development of optical fiber sensors interrogation systems, growing in parallel with the advances of telecommunications. Optical fiber interrogation systems were developed to use a single standard monomode optical fiber as a sensor that can monitor tens of thousands of sensing points at the same time. The methods that extract the sensing information from the backscattered signal in the optical fiber are widely employed because of the easiness of access to the sensor element and the flexibility of these systems. The most studied are the reflectometry in time and frequency domains. The optical time domain reflectometry (OTDR) was the first technique used to detect the position of the failures in the optical fiber communication networks. Using phase sensitive OTDR it is possible to sense strain and temperature at a specific position. In parallel, fiber Bragg gratings (FBGs) became the most widely used devices to implement discrete optical fiber sensors. Multiplexing techniques were developed to perform multi points sensing using these gratings. The reflectometry performed interrogating weak FBGs arrays demonstrate to improve the performance of the system employing a single mode fiber. The interrogation systems nowadays have some drawbacks. Some of them are limited speed of interrogation, bulkiness, and high cost. New interrogation systems and optical fiber sensors were developed in this doctoral thesis to overcome some of these drawbacks. Plastic optical fiber sensors demonstrate to be an innovative platform to develop both new sensors and low cost, easy to implement interrogation systems for commercial plastic fibers. Reflectometry in time domain and microwave photonic techniques were investigated for the interrogation of weak gratings array allowed to simplify the interrogation system for the sensing of temperature and vibration.I would like to greatly thank the European Union’s Horizon 2020 Research and Innovation Program that funded the research described in this thesis under the Marie Sklodowska-Curie Action Grant Agreement 722509.Sartiano, D. (2021). Design of optical fiber sensors and interrogation schemes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161357TESI

    Self-Vernier Effect-Assisted Optical Fiber Sensor based on Microwave Photonics and its Machine Learning Analysis

    Get PDF
    Optical Vernier Effect Has Been Recently Demonstrated as a Tool to Enhance the Sensitivity of Optical Fiber Interferometric Sensors and Has Become a Hot Topic in the Last Few Years. the Generation of the Vernier Effect Relies on the Superposition of Interferograms of Two Interferometers (A Sensing One and a Reference One) with Marginally Different Optical Path Differences (OPDs), Where an Amplitude Modulation-Like Signal is Sustained in the Output Spectrum. the Vernier Modulation Envelope Exhibits Significantly Magnified Sensitivity in Response to External Perturbations, compared to the Individual Sensing Interferometer, Providing a New Route to New Generations of Ultra-Sensitive Optical Fiber Sensors. However, the Construction of a Vernier Effect-Based Sensor Needs Careful Integration of Two Interferometers with a Precise OPD Deviation, which is Challenging If Not Impossible Sometimes. Additionally, the Interrogation of a Vernier Effect-Based Sensor Requires the Acquisition of its Spectrum in a Broad Wavelength (Frequency) Window with a Large Number of Sampling Points, Followed by Cumbersome Processing for the Extraction of the Vernier Envelope Signal. in This Paper, We Propose a New Concept of the Self-Vernier Effect for the Sensitivity Improvement of Optical Fiber Sensors. a Proof-Of-Concept Demonstration is Performed using a Single Low-Coherent Microwave-Photonic Fabry-Perot Interferometer (FPI) with an Addition of an Auxiliary Delay Path. the Self-Vernier Effect is Obtained by the overlap between the Microwave Interferogram of the FPI and its Slightly Time-Delayed One. Detailed Analyses Regarding the Principle, Mathematical Modeling, and Experimental Investigation Are Given. Moreover, We Propose and Demonstrate a New Demodulation Approach to the Vernier Effect-Based Sensor through Machine Learning Analysis by Directly and Statistically Learning the Embedded Relation between the Measurand of Interest and the Output Spectrum. It is Appreciated that the Necessity of the Frequency Observation Window and the Number of Sampling Points Can Be Remarkably Reduced through Machine Learning Analysis. the Present Interrogation Strategy is Highly Generalizable and Can Be Readily Applied to Optical-Domain Vernier Effect-Based Optical Fiber Sensors

    SCM Adaptation to Improve Scanning Rate in RF Interferometry Applications

    Full text link
    [FR] In this letter, we present a novel structure for performing subcarrier multiplexing (SCM) to improve the scanning rate in low coherence interferometry (LCI) systems combined with the microwave photonics (MWP) technology. In this MWP-LCI proposal, the optical path differences (OPDs) produced by different samples between the arms of an interferometer are closely related to the central frequency of different RF resonances generated in the RF domain. By the proposed adaptation of the SCM technique, M subcarriers are multiplexed in the modulation stage and each subcarrier is set to sweep simultaneously a concrete part of the spectrum. The complete electrical transfer function of the structure is obtained combining each individual sweep. Therefore, a considerable reduction of the sweep time is provided to collect the complete electrical transfer function. Therefore, the scanning rate is reduced according to the number of subcarriers (M) employed in the multiplexing stage. An OPD range of 8 mm is achieved with a constant resolution of 120 μm in the whole range. Finally, a maximum sensitivity of 60 dB is also reached for that operation range.The research leading to these results was supported by the National Project TEC2014-60378-C2-1-R funded by the Ministerio de Ciencia y Tecnologia and the regional project PROMETEO FASE II/2013/012 funded by the Generalitat Valenciana. (Corresponding author: J. Mora.)Benítez-González, J.; Mora Almerich, J.; Bolea Boluda, M. (2017). SCM Adaptation to Improve Scanning Rate in RF Interferometry Applications. IEEE Photonics Technology Letters. 29(12):999-1002. https://doi.org/10.1109/LPT.2017.2700884S9991002291
    • …
    corecore