1,236 research outputs found

    Scheduling for Space Tracking and Heterogeneous Sensor Environments

    Get PDF
    This dissertation draws on the fields of heuristic and meta-heuristic algorithm development, resource allocation problems, and scheduling to address key Air Force problems. The world runs on many schedules. People depend upon them and expect these schedules to be accurate. A process is needed where schedules can be dynamically adjusted to allow tasks to be completed efficiently. For example, the Space Surveillance Network relies on a schedule to track objects in space. The schedule must use sensor resources to track as many high-priority satellites as possible to obtain orbit paths and to warn of collision paths. Any collisions that occurred between satellites and other orbiting material could be catastrophic. To address this critical problem domain, this dissertation introduces both a single objective evolutionary tasker algorithm and a multi-objective evolutionary algorithm approach. The aim of both methods is to produce space object tracking schedules to ensure that higher priority objects are appropriately assessed for potential problems. Simulations show that these evolutionary algorithm techniques effectively create schedules to assure that higher priority space objects are tracked. These algorithms have application to a range of dynamic scheduling domains including space object tracking, disaster search and rescue, and heterogeneous sensor scheduling

    Multi-objective worst case optimization by means of evolutionary algorithms

    Get PDF
    Many real-world optimization problems are subject to uncertainty. A possible goal is then to find a solution which is robust in the sense that it has the best worst-case performance over all possible scenarios. However, if the problem also involves mul- tiple objectives, which scenario is “best” or “worst” depends on the user’s weighting of the different criteria, which is generally difficult to specify before alternatives are known. Evolutionary multi-objective optimization avoids this problem by searching for the whole front of Pareto optimal solutions. This paper extends the concept of Pareto dominance to worst case optimization problems and demonstrates how evolu- tionary algorithms can be used for worst case optimization in a multi-objective setting

    Methodology for Comparison of Algorithms for Real-World Multi-objective Optimization Problems: Space Surveillance Network Design

    Get PDF
    Space Situational Awareness (SSA) is an activity vital to protecting national and commercial satellites from damage or destruction due to collisions. Recent research has demonstrated a methodology using evolutionary algorithms (EAs) which is intended to develop near-optimal Space Surveillance Network (SSN) architectures in the sense of low cost, low latency, and high resolution. That research is extended here by (1) developing and applying a methodology to compare the performance of two or more algorithms against this problem, and (2) analyzing the effects of using reduced data sets in those searches. Computational experiments are presented in which the performance of five multi-objective search algorithms are compared to one another using four binary comparison methods, each quantifying the relationship between two solution sets in different ways. Relative rankings reveal strengths and weaknesses of evaluated algorithms empowering researchers to select the best algorithm for their specific needs. The use of reduced data sets is shown to be useful for producing relative rankings of algorithms that are representative of rankings produced using the full set

    A PARETO-FRONTIER ANALYSIS OF PERFORMANCE TRENDS FOR SMALL REGIONAL COVERAGE LEO CONSTELLATION SYSTEMS

    Get PDF
    As satellites become smaller, cheaper, and quicker to manufacture, constellation systems will be an increasingly attractive means of meeting mission objectives. Optimizing satellite constellation geometries is therefore a topic of considerable interest. As constellation systems become more achievable, providing coverage to specific regions of the Earth will become more common place. Small countries or companies that are currently unable to afford large and expensive constellation systems will now, or in the near future, be able to afford their own constellation systems to meet their individual requirements for small coverage regions. The focus of this thesis was to optimize constellation geometries for small coverage regions with the constellation design limited between 1-6 satellites in a Walker-delta configuration, at an altitude of 200-1500km, and to provide remote sensing coverage with a minimum ground elevation angle of 60 degrees. Few Pareto-frontiers have been developed and analyzed to show the tradeoffs among various performance metrics, especially for this type of constellation system. The performance metrics focus on geometric coverage and include revisit time, daily visibility time, constellation altitude, ground elevation angle, and the number of satellites. The objective space containing these performance metrics were characterized for 5 different regions at latitudes of 0, 22.5, 45, 67.5, and 90 degrees. In addition, the effect of minimum ground elevation angle was studied on the achievable performance of this type of constellation system. Finally, the traditional Walker-delta pattern constraint was relaxed to allow for asymmetrical designs. These designs were compared to see how the Walker-delta pattern performs compared to a more relaxed design space. The goal of this thesis was to provide both a framework as well as obtain and analyze Pareto-frontiers for constellation performance relating to small regional coverage LEO constellation systems. This work provided an in-depth analysis of the trends in both the design and objective space of the obtained Pareto-frontiers. A variation on the εNSGA-II algorithm was utilized along with a MATLAB/STK interface to produce these Pareto-frontiers. The εNSGA-II algorithm is an evolutionary algorithm that was developed by Kalyanmoy Deb to solve complex multi-objective optimization problems. The algorithm used in this study proved to be very efficient at obtaining various Pareto-frontiers. This study was also successful in characterizing the design and solution space surrounding small LEO remote sensing constellation systems providing small regional coverage

    Accelerating Manufacturing Decisions using Bayesian Optimization: An Optimization and Prediction Perspective

    Get PDF
    Manufacturing is a promising technique for producing complex and custom-made parts with a high degree of precision. It can also provide us with desired materials and products with specified properties. To achieve that, it is crucial to find out the optimum point of process parameters that have a significant impact on the properties and quality of the final product. Unfortunately, optimizing these parameters can be challenging due to the complex and nonlinear nature of the underlying process, which becomes more complicated when there are conflicting objectives, sometimes with multiple goals. Furthermore, experiments are usually costly, time-consuming, and require expensive materials, man, and machine hours. So, each experiment is valuable and it\u27s critical to determine the optimal experiment location to gain the most comprehensive understanding of the process. Sequential learning is a promising approach to actively learn from the ongoing experiments, iteratively update the underlying optimization routine, and adapt the data collection process on the go. This thesis presents a multi-objective Bayesian optimization framework to find out the optimum processing conditions for a manufacturing setup. It uses an acquisition function to collect data points sequentially and iteratively update its understanding of the underlying design space utilizing a Gaussian Process-based surrogate model. In manufacturing processes, the focus is often on obtaining a rough understanding of the design space using minimal experimentation, rather than finding the optimal parameters. This falls under the category of approximating the underlying function rather than design optimization. This approach can provide material scientists or manufacturing engineers with a comprehensive view of the entire design space, increasing the likelihood of making discoveries or making robust decisions. However, a precise and reliable prediction model is necessary for a good approximation. To meet this requirement, this thesis proposes an epsilon-greedy sequential prediction framework that is distinct from the optimization framework. The data acquisition strategy has been refined to balance exploration and exploitation, and a threshold has been established to determine when to switch between the two. The performance of this proposed optimization and prediction framework is evaluated using real-life datasets against the traditional design of experiments. The proposed frameworks have generated effective optimization and prediction results using fewer experiments

    Metaheuristics and cooperative approaches for the Bi-objective Ring Star Problem

    Get PDF
    International audienceThis paper presents and investigates different approaches to solve a new bi-objective routing problem called the ring star problem. It consists of locating a simple cycle through a subset of nodes of a graph while optimizing two kinds of cost. The first objective is the minimization of a ring cost that is related to the length of the cycle. The second one is the minimization of an assignment cost from non-visited nodes to visited ones. In spite of its obvious bi-objective formulation, this problem has always been investigated in a single-objective way. To tackle the bi-objective ring star problem, we first investigate different stand-alone search methods. Then, we propose two cooperative strategies that combine two multi-objective metaheuristics: an elitist evolutionary algorithm and a population-based local search. We apply these new hybrid approaches to well-known benchmark test instances and demonstrate their effectiveness in comparison to non-hybrid algorithms and to state-of-the-art methods

    Energy-aware scheduling in distributed computing systems

    Get PDF
    Distributed computing systems, such as data centers, are key for supporting modern computing demands. However, the energy consumption of data centers has become a major concern over the last decade. Worldwide energy consumption in 2012 was estimated to be around 270 TWh, and grim forecasts predict it will quadruple by 2030. Maximizing energy efficiency while also maximizing computing efficiency is a major challenge for modern data centers. This work addresses this challenge by scheduling the operation of modern data centers, considering a multi-objective approach for simultaneously optimizing both efficiency objectives. Multiple data center scenarios are studied, such as scheduling a single data center and scheduling a federation of several geographically-distributed data centers. Mathematical models are formulated for each scenario, considering the modeling of their most relevant components such as computing resources, computing workload, cooling system, networking, and green energy generators, among others. A set of accurate heuristic and metaheuristic algorithms are designed for addressing the scheduling problem. These scheduling algorithms are comprehensively studied, and compared with each other, using statistical tools to evaluate their efficacy when addressing realistic workloads and scenarios. Experimental results show the designed scheduling algorithms are able to significantly increase the energy efficiency of data centers when compared to traditional scheduling methods, while providing a diverse set of trade-off solutions regarding the computing efficiency of the data center. These results confirm the effectiveness of the proposed algorithmic approaches for data center infrastructures.Los sistemas informáticos distribuidos, como los centros de datos, son clave para satisfacer la demanda informática moderna. Sin embargo, su consumo de energético se ha convertido en una gran preocupación. Se estima que mundialmente su consumo energético rondó los 270 TWh en el año 2012, y algunos prevén que este consumo se cuadruplicará para el año 2030. Maximizar simultáneamente la eficiencia energética y computacional de los centros de datos es un desafío crítico. Esta tesis aborda dicho desafío mediante la planificación de la operativa del centro de datos considerando un enfoque multiobjetivo para optimizar simultáneamente ambos objetivos de eficiencia. En esta tesis se estudian múltiples variantes del problema, desde la planificación de un único centro de datos hasta la de una federación de múltiples centros de datos geográficmentea distribuidos. Para esto, se formulan modelos matemáticos para cada variante del problema, modelado sus componentes más relevantes, como: recursos computacionales, carga de trabajo, refrigeración, redes, energía verde, etc. Para resolver el problema de planificación planteado, se diseñan un conjunto de algoritmos heurísticos y metaheurísticos. Estos son estudiados exhaustivamente y su eficiencia es evaluada utilizando una batería de herramientas estadísticas. Los resultados experimentales muestran que los algoritmos de planificación diseñados son capaces de aumentar significativamente la eficiencia energética de un centros de datos en comparación con métodos tradicionales planificación. A su vez, los métodos propuestos proporcionan un conjunto diverso de soluciones con diferente nivel de compromiso respecto a la eficiencia computacional del centro de datos. Estos resultados confirman la eficacia del enfoque algorítmico propuesto

    Improving the performance of a preference-based multi-objective algorithm to optimize food treatment processes

    Get PDF
    This work focuses on the optimization of some high-pressure and temperature food treatments. In some cases, when dealing with real-life multi-objective optimization problems, such as the one considered here, the computational cost of evaluating the considered objective functions is usually quite high. Therefore, only a reduced number of iterations is affordable for the optimization algorithm. However, using fewer iterations can lead to inaccurate solutions far from the real Pareto optimal front. In this article, different mechanisms are analysed and compared to improve the convergence of a preference-based multi-objective optimization algorithm called the Weighting Achievement Scalarizing Function Genetic Algorithm (WASF-GA). The combination of these techniques has been applied to optimize a particular food treatment process. In particular, one of the proposed methods, based on the introduction of an advanced population, achieves important improvements in the quality indicator measures considered

    Metaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study

    Get PDF
    This paper presents and experiments approaches to solve a new bi-objective routing problem called the ring star problem. It consists of locating a simple cycle through a subset of nodes of a graph while optimizing two kinds of cost. The first objective is the minimization of a ring cost that is related to the length of the cycle. The second one is the minimization of an assignment cost from non-visited nodes to visited ones. In spite of its obvious bi-objective formulation, this problem has always been investigated in a single-objective way. To tackle the bi-objective ring star problem, we first investigate different stand-alone search methods. Then, we propose two cooperative strategies that combines two multiple objective metaheuristics: an elitist evolutionary algorithm and a population-based local search. We apply this new hybrid approaches to well-known benchmark test instances and demonstrate their effectiveness in comparison to non-hybrid algorithms and to state-of-the-art methods

    Multi-Objective Optimization for Wind Estimation and Aircraft Model Identification

    Full text link
    In this paper, a novel method for aerodynamic model identification of a micro-air vehicle is proposed. The principal contribution is a technique of wind estimation that provides information about the existing wind during flight when no air-data sensors are available. The estimation technique employs multi-objective optimization algorithms that utilize identification errors to propose the wind-speed components that best fit the dynamic behavior observed. Once the wind speed is estimated, the flight experimentation data are corrected and utilized to perform an identification of the aircraft model parameters. A multi-objective optimization algorithm is also used, but with the objective of estimating the aerodynamic stability and control derivatives. Employing data from different flights offers the possibility of obtaining sets of models that form the Pareto fronts. Deciding which model best adjusts to the experiments performed (compromise model) will be the ultimate task of the control engineer.The authors would like to thank the Spanish Ministry of Innovation and Science for providing funding through grant BES-2012-056210 and projects TIN-2011-28082 and ENE-25900. We also want to acknowledge the Generalitat Valenciana for financing this work through project PROMETEO/2012/028.Velasco Carrau, J.; García-Nieto Rodríguez, S.; Salcedo Romero De Ávila, JV.; Bishop, RH. (2015). Multi-Objective Optimization for Wind Estimation and Aircraft Model Identification. Journal of Guidance, Control, and Dynamics. 39(2):372-389. https://doi.org/10.2514/1.G001294S37238939
    corecore