44 research outputs found

    Ultra-broadband surface-normal coherent optical receiver with nanometallic polarizers

    Full text link
    A coherent receiver that can demodulate high-speed in-phase and quadrature signals of light is an essential component for optical communication, interconnects, imaging, and computing. Conventional waveguide-based coherent receivers, however, exhibit large footprints, difficulty in coupling a large number of spatial channels efficiently, and limited operating bandwidth imposed by the waveguide-based optical hybrid. Here, we present a surface-normal coherent receiver with nanometallic-grating-based polarizers integrated directly on top of photodetectors without the need for an optical hybrid circuit. Using a fabricated device with the active section occupying a 70-{\mu}m-square footprint, we demonstrate demodulation of high-speed (up to 64 Gbaud) coherent signals in various formats. Moreover, ultra-broadband operation from 1260 nm to 1630 nm is demonstrated, thanks to the wavelength-insensitive nanometallic polarizers. To our knowledge, this is the first demonstration of a surface-normal homodyne optical receiver, which can easily be scaled to a compact two-dimensional arrayed device to receive highly parallelized coherent signals.Comment: 23 pages, 4 figures (main manuscript) + 4 pages, 2 figures (supporting info

    Generation and Manipulation of Higher Order Fractional and Integer Bessel Gaussian Beams

    Get PDF
    Optical orbital angular momentum (OAM) describes orbiting photons, swirling local wave vectors, or spiraling phase distribution depending on what theory we use to explain light. If we consider light as a propagating electromagnetic wave, then light has the freedoms of frequency, magnitude, phase, and polarization. For a monochromatic light, expanding the later three freedoms spatiotemporally, numerous optical modes are solved from Maxwell’s equations and boundary conditions. OAM mode study starts from integer charge because it is in the integer form of the fundamental phase singularity structure. Fractional OAM mode is the Fourier series of integer OAM modes. The average OAM does not conserve along with propagation for the traditional fractional OAM modes. We propose a new asymmetric fractional Bessel Gaussian mode providing the average OAM conserving along with the propagation. To better understand the fractional OAM mode or integer OAM mode combination, we study the novel concentric vortex optics. The analytical propagation expression of the concentric vortex beam is derived and analyzed. The concentric vortex beam is essentially the OAM spectrum, with only two integer OAM components. The spectrum coefficiencies are real numbers and approximately power equalized in general cases. The concentric vortex beam is the coherent combination of incomplete Kummer beams. As the inner aperture tuning large, the beam evolves into the Kummer beam with the inner charge number. The aperture decreases, the outer charges Kummer beam dominates. The proposed asymmetric fractional Bessel Gaussian beam’s Fourier transform is azimuthal Gaussian perfect vortex. We use log-polar coordinate mapping diffractive optics to transform the elliptical Gaussian beam into the desired azimuthal Gaussian perfect vortex beam. The generated asymmetric fractional Bessel Gaussian beam is systematically compared with Kotlyar’s asymmetric Bessel Gaussian beam. It’s found that the proposed beam has a narrower OAM spectrum, preserving average fractional OAM. Furthermore, the log-polar transform’s inherent output lateral shifting problem is addressed for the first time to our knowledge. An improved log-polar design is proposed, and we use five critical metrics to show the new log-polar generated asymmetric Bessel Gaussian beam’s quality is much improved. The manipulation of the high order asymmetric fractional Bessel Gaussian beam is critical to applications scaling from communication, sensing, filamentation, to micromanipulation. We propose and demonstrate acousto-optical deflector (AOD) HOBBIT (Higher Order Bessel Beams Integrated in Time) system. The system can continuously tune the OAM modes on the order of 400 kHz. This speed beats the fastest spatial light modulator (SLM), and even better, the proposed system could work for high power applications

    High spectral efficiency transmission using optical frequency combs

    Get PDF
    Modern long-haul optical communication systems transmit data on all available single-mode fiber dimensions, time, polarization, wavelength, phase and amplitude. Powerful digital signal processing and forward error correction has pushed the per-channel throughput towards its theoretical limits and the bandwidth is limited by the erbium-doped fiber amplifiers. Maximizing the spectral efficiency (SE), i.e. the throughput normalized to bandwidth, is therefore of indisputable importance. Even more so in optical networks as large routing guard-bands drastically reduce the SE of traditional WDM systems. Flex-grid networks with optical superchannels can overcome this limitation. Superchannels consist of multiple tightly packed WDM channels routed as a unit. A comb-based superchannel is formed by encoding independent information onto lines from an optical frequency comb, a multi-wavelength light source fully determined by its center frequency and line spacing. This thesis studies the generation, transmission and detection of comb-based superchannels. Focus is on profiting from unique frequency comb properties to realize systems with capabilities beyond that of conventional systems using arrays of independent lasers. Digital, analog and optical processing schemes are proposed, and combined, to increase the system SE. Superchannel modulation is investigated and a scheme capable of encoding independent information onto the lines from a frequency comb in a single waveguide structure is demonstrated. By combining overhead-optimized pilot-based DSP with a 22GHz-spaced soliton microcomb, superchannel transmission with record SE for distances up to 3000km is realized, closing the performance gap between chip-scale and bulk-optic combs in optical communications. The use of two optical pilot tones (PTs) to phase-lock a transmitter and receiver comb pair is studied, realizing self-homodyne detection of a 50x20Gbaud PM-64QAM superchannel with 4% pilot overhead. The PT gains are furthermore analyzed and a complexity-performance trade-off using a single PT and low complexity DSP is proposed. The scheme is used to demonstrate 12bits/s/Hz SE over the full C-band using 3x50xGBaud PM-256QAM superchannels and DSP-complexity reduction at distances exceeding 1000km is shown. Finally, a comb-enabled multi-channel joint equalization scheme capable of mitigating inter-channel crosstalk and thereby minimizing the SE loss from spectral guard bands is demonstrated

    Roadmap on multimode light shaping

    Get PDF
    Our ability to generate new distributions of light has been remarkably enhanced in recent years. At the most fundamental level, these light patterns are obtained by ingeniously combining different electromagnetic modes. Interestingly, the modal superposition occurs in the spatial, temporal as well as spatio-temporal domain. This generalized concept of structured light is being applied across the entire spectrum of optics: generating classical and quantum states of light, harnessing linear and nonlinear light-matter interactions, and advancing applications in microscopy, spectroscopy, holography, communication, and synchronization. This Roadmap highlights the common roots of these different techniques and thus establishes links between research areas that complement each other seamlessly. We provide an overview of all these areas, their backgrounds, current research, and future developments. We highlight the power of multimodal light manipulation and want to inspire new eclectic approaches in this vibrant research community.acceptedVersionPeer reviewe

    NASA Tech Briefs Index, 1976

    Get PDF
    Abstracts of new technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Emphasis is placed on information considered likely to be transferrable across industrial, regional, or disciplinary lines. Subject matter covered includes: electronic components and circuits; electronic systems; physical sciences; materials; life sciences; mechanics; machinery; fabrication technology; and mathematics and information sciences

    Ultrasonic superharmonic imaging

    Get PDF

    Ultrasonic superharmonic imaging

    Get PDF
    corecore