1,734 research outputs found

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Subsystems for future access networks

    Get PDF
    Current evolution and tendencies of Telecom Networks in general and more specifically optical Metro and Access Networks and their convergence are reported. Based on this evolution, a set of research lines are foreseen regarding subsystems and devices as: high speed optical sources, modulators and receivers, for the next generation of Passive Optical Networks. The ICT project EURO-FOS is achieving European level cooperative research among academia and industry, enabling future telecommunication networks

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    A low-energy rate-adaptive bit-interleaved passive optical network

    Get PDF
    Energy consumption of customer premises equipment (CPE) has become a serious issue in the new generations of time-division multiplexing passive optical networks, which operate at 10 Gb/s or higher. It is becoming a major factor in global network energy consumption, and it poses problems during emergencies when CPE is battery-operated. In this paper, a low-energy passive optical network (PON) that uses a novel bit-interleaving downstream protocol is proposed. The details about the network architecture, protocol, and the key enabling implementation aspects, including dynamic traffic interleaving, rate-adaptive descrambling of decimated traffic, and the design and implementation of a downsampling clock and data recovery circuit, are described. The proposed concept is shown to reduce the energy consumption for protocol processing by a factor of 30. A detailed analysis of the energy consumption in the CPE shows that the interleaving protocol reduces the total energy consumption of the CPE significantly in comparison to the standard 10 Gb/s PON CPE. Experimental results obtained from measurements on the implemented CPE prototype confirm that the CPE consumes significantly less energy than the standard 10 Gb/s PON CPE

    Demonstration of long-reach PON using 10 Gb/s 3R burst-mode wavelength converter

    Get PDF
    Long-reach optical access networks promise significant cost savings. To merge existing metro and access networks to a single long-reach network, the long-reach technology has to address not only the power loss and fiber dispersion problems but also mismatch between two merged entities in terms of wavelengths and operational modes, especially during the transition period when support of legacy services is still required. In this letter, we demonstrate a long reach network employing a 10 Gb/s burst-mode O/E/O wavelength converter. The converter can simultaneously address the power loss, dispersion, and mismatch problems by a compact assembly. Two upstream wavelengths located in the 1310 nm and 1550 nm windows in the access section are converted to a DWDM wavelength of 1554.13 nm in the metro section. Error-free performance is achieved with a loud/soft ratio of 10 dB at a sensitivity of −27 dBm and the overhead for the burst-mode operation is as low as 0.512%

    Getting routers out of the core: Building an optical wide area network with "multipaths"

    Full text link
    We propose an all-optical networking solution for a wide area network (WAN) based on the notion of multipoint-to-multipoint lightpaths that, for short, we call "multipaths". A multipath concentrates the traffic of a group of source nodes on a wavelength channel using an adapted MAC protocol and multicasts this traffic to a group of destination nodes that extract their own data from the confluent stream. The proposed network can be built using existing components and appears less complex and more efficient in terms of energy consumption than alternatives like OPS and OBS. The paper presents the multipath architecture and compares its energy consumption to that of a classical router-based ISP network. A flow-aware dynamic bandwidth allocation algorithm is proposed and shown to have excellent performance in terms of throughput and delay

    DISCUS: the distributed core for ubiquitous broadband access

    Get PDF
    A new end to end architecture based on Long-Reach Passive Optical Network (LR-PON) with wireless integration, a distributed core built of optical transparency islands and an OpenFlow-based control plane, which is being developed in the EU project DISCUS, is described in this paper. The main technological advances and the network modelling and optimization approach are reported

    A 10-Gb/s 1024-way-split 100-km long-reach optical-access network

    Get PDF
    Optical-access networks have been developed to remove the access-network bandwidth bottleneck. However, the current solutions do not adequately address the network economics to provide a truly cost-effective solution. Long-reach optical-access networks introduce a cost-effective solution by connecting the customer directly to the core network, bypassing the metro network, and, hence, removing significant cost. This paper charts the design and development of a 1024-way-split 100-km 10-Gb/s symmetrical network, which experimentally proves the feasibility of long-reach optical-access networks for both the upstream and downstream transmission
    • 

    corecore