24 research outputs found

    A Polar Map Based Approach Using Retinal Fundus Images for Glaucoma Detection

    Get PDF
    Cup-to-disc ratio is commonly used as an important parameter for glaucoma screening, involving segmentation of the optic cup on fundus images. We propose a novel polar map representation of the optic disc, using a combination of supervised and unsupervised cup segmentation techniques, for detection of glaucoma. Instead of performing hard thresholding on the segmentation output to extract the cup, we consider the cup confidence scores inside the disc to construct a polar map, and extract sector-wise features for learning a glaucoma risk probability (GRP) for the image. We compare the performance of GRP vis-Ă -vis the cup-to-disc ratio (CDR). On an evaluation dataset of 100 images from the publicly available RIM-ONE database, our method achieves 82% sensitivity at 84% specificity, and 96% sensitivity at 60% specificity (AUC of 0.8964). Experiments indicate that the polar map based method can provide a more discriminatory glaucoma risk probability score compared to CDR

    Effunet-spagen: An efficient and spatial generative approach to glaucoma detection

    Get PDF
    Current research in automated disease detection focuses on making algorithms “slimmer” reducing the need for large training datasets and accelerating recalibration for new data while achieving high accuracy. The development of slimmer models has become a hot research topic in medical imaging. In this work, we develop a two-phase model for glaucoma detection, identifying and exploiting a redundancy in fundus image data relating particularly to the geometry. We propose a novel algorithm for the cup and disc segmentation “EffUnet” with an efficient convolution block and combine this with an extended spatial generative approach for geometry modelling and classification, termed “SpaGen” We demonstrate the high accuracy achievable by EffUnet in detecting the optic disc and cup boundaries and show how our algorithm can be quickly trained with new data by recalibrating the EffUnet layer only. Our resulting glaucoma detection algorithm, “EffUnet-SpaGen”, is optimized to significantly reduce the computational burden while at the same time surpassing the current state-of-art in glaucoma detection algorithms with AUROC 0.997 and 0.969 in the benchmark online datasets ORIGA and DRISHTI, respectively. Our algorithm also allows deformed areas of the optic rim to be displayed and investigated, providing explainability, which is crucial to successful adoption and implementation in clinical settings
    corecore