183 research outputs found

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    Medical Image Segmentation Review: The success of U-Net

    Full text link
    Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model achieved tremendous attention from academic and industrial researchers. Several extensions of this network have been proposed to address the scale and complexity created by medical tasks. Addressing the deficiency of the naive U-Net model is the foremost step for vendors to utilize the proper U-Net variant model for their business. Having a compendium of different variants in one place makes it easier for builders to identify the relevant research. Also, for ML researchers it will help them understand the challenges of the biological tasks that challenge the model. To address this, we discuss the practical aspects of the U-Net model and suggest a taxonomy to categorize each network variant. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. We provide a comprehensive implementation library with trained models for future research. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation. All information is gathered in https://github.com/NITR098/Awesome-U-Net repository.Comment: Submitted to the IEEE Transactions on Pattern Analysis and Machine Intelligence Journa

    Deep Representation Learning with Limited Data for Biomedical Image Synthesis, Segmentation, and Detection

    Get PDF
    Biomedical imaging requires accurate expert annotation and interpretation that can aid medical staff and clinicians in automating differential diagnosis and solving underlying health conditions. With the advent of Deep learning, it has become a standard for reaching expert-level performance in non-invasive biomedical imaging tasks by training with large image datasets. However, with the need for large publicly available datasets, training a deep learning model to learn intrinsic representations becomes harder. Representation learning with limited data has introduced new learning techniques, such as Generative Adversarial Networks, Semi-supervised Learning, and Self-supervised Learning, that can be applied to various biomedical applications. For example, ophthalmologists use color funduscopy (CF) and fluorescein angiography (FA) to diagnose retinal degenerative diseases. However, fluorescein angiography requires injecting a dye, which can create adverse reactions in the patients. So, to alleviate this, a non-invasive technique needs to be developed that can translate fluorescein angiography from fundus images. Similarly, color funduscopy and optical coherence tomography (OCT) are also utilized to semantically segment the vasculature and fluid build-up in spatial and volumetric retinal imaging, which can help with the future prognosis of diseases. Although many automated techniques have been proposed for medical image segmentation, the main drawback is the model's precision in pixel-wise predictions. Another critical challenge in the biomedical imaging field is accurately segmenting and quantifying dynamic behaviors of calcium signals in cells. Calcium imaging is a widely utilized approach to studying subcellular calcium activity and cell function; however, large datasets have yielded a profound need for fast, accurate, and standardized analyses of calcium signals. For example, image sequences from calcium signals in colonic pacemaker cells ICC (Interstitial cells of Cajal) suffer from motion artifacts and high periodic and sensor noise, making it difficult to accurately segment and quantify calcium signal events. Moreover, it is time-consuming and tedious to annotate such a large volume of calcium image stacks or videos and extract their associated spatiotemporal maps. To address these problems, we propose various deep representation learning architectures that utilize limited labels and annotations to address the critical challenges in these biomedical applications. To this end, we detail our proposed semi-supervised, generative adversarial networks and transformer-based architectures for individual learning tasks such as retinal image-to-image translation, vessel and fluid segmentation from fundus and OCT images, breast micro-mass segmentation, and sub-cellular calcium events tracking from videos and spatiotemporal map quantification. We also illustrate two multi-modal multi-task learning frameworks with applications that can be extended to other domains of biomedical applications. The main idea is to incorporate each of these as individual modules to our proposed multi-modal frameworks to solve the existing challenges with 1) Fluorescein angiography synthesis, 2) Retinal vessel and fluid segmentation, 3) Breast micro-mass segmentation, and 4) Dynamic quantification of calcium imaging datasets

    U-net and its variants for medical image segmentation: A review of theory and applications

    Get PDF
    U-net is an image segmentation technique developed primarily for image segmentation tasks. These traits provide U-net with a high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in nearly all major image modalities, from CT scans and MRI to Xrays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. Given that U-net’s potential is still increasing, this narrative literature review examines the numerous developments and breakthroughs in the U-net architecture and provides observations on recent trends. We also discuss the many innovations that have advanced in deep learning and discuss how these tools facilitate U-net. In addition, we review the different image modalities and application areas that have been enhanced by U-net

    Attention Mechanisms in Medical Image Segmentation: A Survey

    Full text link
    Medical image segmentation plays an important role in computer-aided diagnosis. Attention mechanisms that distinguish important parts from irrelevant parts have been widely used in medical image segmentation tasks. This paper systematically reviews the basic principles of attention mechanisms and their applications in medical image segmentation. First, we review the basic concepts of attention mechanism and formulation. Second, we surveyed over 300 articles related to medical image segmentation, and divided them into two groups based on their attention mechanisms, non-Transformer attention and Transformer attention. In each group, we deeply analyze the attention mechanisms from three aspects based on the current literature work, i.e., the principle of the mechanism (what to use), implementation methods (how to use), and application tasks (where to use). We also thoroughly analyzed the advantages and limitations of their applications to different tasks. Finally, we summarize the current state of research and shortcomings in the field, and discuss the potential challenges in the future, including task specificity, robustness, standard evaluation, etc. We hope that this review can showcase the overall research context of traditional and Transformer attention methods, provide a clear reference for subsequent research, and inspire more advanced attention research, not only in medical image segmentation, but also in other image analysis scenarios.Comment: Submitted to Medical Image Analysis, survey paper, 34 pages, over 300 reference

    U-Net and its variants for medical image segmentation: theory and applications

    Full text link
    U-net is an image segmentation technique developed primarily for medical image analysis that can precisely segment images using a scarce amount of training data. These traits provide U-net with a very high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in all major image modalities from CT scans and MRI to X-rays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. As the potential of U-net is still increasing, in this review we look at the various developments that have been made in the U-net architecture and provide observations on recent trends. We examine the various innovations that have been made in deep learning and discuss how these tools facilitate U-net. Furthermore, we look at image modalities and application areas where U-net has been applied.Comment: 42 pages, in IEEE Acces
    • …
    corecore