6 research outputs found

    POPISK: T-cell reactivity prediction using support vector machines and string kernels

    Get PDF
    BACKGROUND: Accurate prediction of peptide immunogenicity and characterization of relation between peptide sequences and peptide immunogenicity will be greatly helpful for vaccine designs and understanding of the immune system. In contrast to the prediction of antigen processing and presentation pathway, the prediction of subsequent T-cell reactivity is a much harder topic. Previous studies of identifying T-cell receptor (TCR) recognition positions were based on small-scale analyses using only a few peptides and concluded different recognition positions such as positions 4, 6 and 8 of peptides with length 9. Large-scale analyses are necessary to better characterize the effect of peptide sequence variations on T-cell reactivity and design predictors of a peptide's T-cell reactivity (and thus immunogenicity). The identification and characterization of important positions influencing T-cell reactivity will provide insights into the underlying mechanism of immunogenicity. RESULTS: This work establishes a large dataset by collecting immunogenicity data from three major immunology databases. In order to consider the effect of MHC restriction, peptides are classified by their associated MHC alleles. Subsequently, a computational method (named POPISK) using support vector machine with a weighted degree string kernel is proposed to predict T-cell reactivity and identify important recognition positions. POPISK yields a mean 10-fold cross-validation accuracy of 68% in predicting T-cell reactivity of HLA-A2-binding peptides. POPISK is capable of predicting immunogenicity with scores that can also correctly predict the change in T-cell reactivity related to point mutations in epitopes reported in previous studies using crystal structures. Thorough analyses of the prediction results identify the important positions 4, 6, 8 and 9, and yield insights into the molecular basis for TCR recognition. Finally, we relate this finding to physicochemical properties and structural features of the MHC-peptide-TCR interaction. CONCLUSIONS: A computational method POPISK is proposed to predict immunogenicity with scores which are useful for predicting immunogenicity changes made by single-residue modifications. The web server of POPISK is freely available at http://iclab.life.nctu.edu.tw/POPISK

    SITC/iSBTc Cancer Immunotherapy Biomarkers Resource Document: Online resources and useful tools - a compass in the land of biomarker discovery

    Get PDF
    Recent positive clinical results in cancer immunotherapy point to the potential of immune-based strategies to provide effective treatment of a variety of cancers. In some patients, the responses to cancer immunotherapy are durable, dramatically extending survival. Extensive research efforts are being made to identify and validate biomarkers that can help identify subsets of cancer patients that will benefit most from these novel immunotherapies. In addition to the clear advantage of such predictive biomarkers, immune biomarkers are playing an important role in the development, clinical evaluation and monitoring of cancer immunotherapies. This Cancer Immunotherapy Resource Document, prepared by the Society for Immunotherapy of Cancer (SITC, formerly the International Society for Biological Therapy of Cancer, iSBTc), provides key references and online resources relevant to the discovery, evaluation and clinical application of immune biomarkers. These key resources were identified by experts in the field who are actively pursuing research in biomarker identification and validation. This organized collection of the most useful references, online resources and tools serves as a compass to guide discovery of biomarkers essential to advancing novel cancer immunotherapies

    Advanced Immunoinformatics Approaches for Precision Medicine

    Get PDF
    Genomic sequencing and other ’-omic’ technologies are slowly changing biomedical practice. As a result, patients now can be treated based on their molecular profile. Especially the immune system’s variability, in particular that of the human leukocyte antigen (HLA) gene cluster, makes such a paradigm indispensable when treating illnesses such as cancer, autoimmune diseases, or infectious diseases. It can be, however, costly and time-consuming to determine the HLA genotype with traditional means, as these methods do not utilize often pre-existing sequencing data. We therefore proposed an algorithmic approach that can use these data sources to infer the HLA genotype. HLA genotyping inference can be cast into a set covering problem under special biological constraints and can be solved efficiently via integer linear programming. Our proposed approach outperformed previously published methods and remains one of the most accurate methods to date. We then introduced two applications in which a HLA-based stratification is vital for the efficacy of the treatment and the reduction of its adverse effects. In the first example, we dealt with the optimal design of string-of-beads vaccines (SOB). We developed a mathematical model that maximizes the efficacy of such vaccines while minimizing their side effects based on a given HLA distribution. Comparisons of our optimally designed SOB with experimentally tested designs yielded promising results. In the second example, we considered the problem of anti-drug antibody (ADA) formation of biotherapeutics caused by HLA presented peptides. We combined a new statistical model for mutation effect prediction together with a quantitative measure of immunogenicity to formulate an optimization problem that finds alterations to reduce the risk of ADA formation. To efficiently solve this bi-objective problem, we developed a distributed solver that is up to 25-times faster than state-of-the art solvers. We used our approach to design the C2 domain of factor VIII, which is linked to ADA formation in hemophilia A. Our experimental evaluations of the proposed designs are encouraging and demonstrate the prospects of our approach. Bioinformatics is an integral part of modern biomedical research. The translation of advanced methods into clinical use is often complicated. To ease the translation, we developed a programming library for computational immunology and used it to implement a Galaxy-based web server for vaccine design and a KNIME extension for desktop PCs. These platforms allow researchers to develop their own immunoinformatics workflows utilizing the platform’s graphical programming capabilities
    corecore