71 research outputs found

    Opportunistic Secondary Spectrum Sharing Protocols for Primary implementing an IR type Hybrid-ARQ Protocol

    Get PDF
    In this paper, we propose, analyze and compare three different methods for opportunistic spectrum sharing access when the primary users implements an Incremental Redundancy (IR) type Hybrid Automatic ReQuest (H-ARQ) protocol. The first method consists in allowing the secondary user to communicate only during the first primary transmission round of the IR H-ARQ protocol. In this scenario, if the the secondary receiver fails to decode its message after the first round, it realizes a successive interference cancellation in the subsequent primary HARQ rounds by listening to the primary user. The second method consists in realizing a perfect interference cancellation at the secondary receiver with causal channel state information. In this method, the secondary user communicates only when the secondary receiver succeeds in decoding the primary message.To improve throughput performance at the secondary, the secondary pair is also considering the use of an IR-HARQ protocol. In a third method, the secondary user communicates following the same rule as in the proposed second method, but implementing an Adaptive Modulation and Coding scheme instead of HARQ. In particular, we show that this last protocol with a small number of interfered slots allows to limit the loss in the primary throughput needed for the secondary user to transmit

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model

    Agile wireless transmission strategies

    Get PDF

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Packet Scheduling and Quality of Service in HSDPA

    Get PDF
    • …
    corecore