590 research outputs found

    An altruistic cross-layer recovering mechanism for ad hoc wireless networks

    Full text link
    Video streaming services have restrictive delay and bandwidth constraints. Ad hoc networks represent a hostile environment for this kind of real-time data transmission. Emerging mesh networks, where a backbone provides more topological stability, do not even assure a high quality of experience. In such scenario, mobility of terminal nodes causes link breakages until a new route is calculated. In the meanwhile, lost packets cause annoying video interruptions to the receiver. This paper proposes a new mechanism of recovering lost packets by means of caching overheard packets in neighbor nodes and retransmit them to destination. Moreover, an optimization is shown, which involves a video-aware cache in order to recover full frames and prioritize more significant frames. Results show the improvement in reception, increasing the throughput as well as video quality, whereas larger video interruptions are considerably reduced. Copyright © 2014 John Wiley & Sons, Ltd.Arce Vila, P.; Guerri Cebollada, JC. (2015). An altruistic cross-layer recovering mechanism for ad hoc wireless networks. Wireless Communications and Mobile Computing. 15(13):1744-1758. doi:10.1002/wcm.2459S174417581513Li J Blake C De Couto DSJ Lee HI Morris R Capacity of ad hoc wireless networks Proceedings of the 7th Annual International Conference on Mobile Computing and Networks (MobiCom) 2001 61 69Akyildiz, I. F., & Xudong Wang. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23-S30. doi:10.1109/mcom.2005.1509968Hsu, C.-J., Liu, H.-I., & Seah, W. K. G. (2011). Opportunistic routing – A review and the challenges ahead. Computer Networks, 55(15), 3592-3603. doi:10.1016/j.comnet.2011.06.021Huang, X., Zhai, H., & Fang, Y. (2008). Robust cooperative routing protocol in mobile wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 5278-5285. doi:10.1109/t-wc.2008.060680Wieselthier, J. E., Nguyen, G. D., & Ephremides, A. (2001). Mobile Networks and Applications, 6(3), 251-263. doi:10.1023/a:1011478717164Clausen T Jacquet P Optimized Link State Routing Protocol (OLSR), IETF RFC 3626 2003 http://www.rfc-editor.org/rfc/rfc3626.txtMarina, M. K., & Das, S. R. (2006). Ad hoc on-demand multipath distance vector routing. Wireless Communications and Mobile Computing, 6(7), 969-988. doi:10.1002/wcm.432Zhou X Lu Y Ma HG Routing improvement using multiple disjoint paths for ad hoc networks International Conference on Wireless and Optical Communications Networks (IFIP) 2006 1 5Fujisawa H Minami H Yamamoto M Izumi Y Fujita Y Route selection using retransmission packets for video streaming on ad hoc networks IEEE Conference on Radio and Wireless Symposium (RWS) 2006 607 610Badis H Agha KA QOLSR multi-path routing for mobile ad hoc networks based on multiple metrics: bandwidth and delay IEEE 59th Vehicular Technology Conference (VTC) 2004 2181 2184Wu Z Wu J Cross-layer routing optimization for video transmission over wireless ad hoc networks 6th International Conference on Wireless Communications Networks and Mobile Computing (WiCOM) 2010 1 6Schier, M., & Welzl, M. (2012). Optimizing Selective ARQ for H.264 Live Streaming: A Novel Method for Predicting Loss-Impact in Real Time. IEEE Transactions on Multimedia, 14(2), 415-430. doi:10.1109/tmm.2011.2178235Nikoupour M Nikoupour A Dehghan M A cross-layer framework for video streaming over wireless ad-hoc networks 3rd International Conference on Digital Information Management (ICDIM) 2008 340 345Yamamoto R Miyoshi T Distributed retransmission method using neighbor terminals for ad hoc networks Proceedings of the 14th Asia-Pacific Conference on Communications (APCC) 2008 1 5Gravalos I Kokkinos P Varvarigos EA Multi-criteria cooperative energy-aware routing in wireless ad-hoc networks Proceedings of the 9th International Wireless Communications and Mobile Computing Conference (IWCMC) 2013 387 393Abid, R. M., Benbrahim, T., & Biaz, S. (2010). IEEE 802.11s Wireless Mesh Networks for Last-Mile Internet Access: An Open-Source Real-World Indoor Testbed Implementation. Wireless Sensor Network, 02(10), 725-738. doi:10.4236/wsn.2010.210088Yen, Y.-S., Chang, R.-S., & Wu, C.-Y. (2011). A seamless handoff scheme for IEEE 802.11 wireless networks. Wireless Communications and Mobile Computing, 13(2), 157-169. doi:10.1002/wcm.1102Liangzhong Yin, & Guohong Cao. (2006). Supporting cooperative caching in ad hoc networks. IEEE Transactions on Mobile Computing, 5(1), 77-89. doi:10.1109/tmc.2006.15Biswas S Morris R ExOR: opportunistic multi-hop routing for wireless networks Proceedings of ACM SIGCOMM 2005 133 144Chachulski S Jennings M Katti S Katabi D Trading structure for randomness in wireless opportunistic routing Proceedings of ACM SIGCOMM 2007 169 180Kohler E Handley M Floyd S Datagram Congestion Control Protocol (DCCP), IETF RFC 4340 2006 http://www.rfc-editor.org/rfc/rfc4340.txtSchierl, T., Ganger, K., Hellge, C., Wiegand, T., & Stockhammer, T. (2006). SVC-based multisource streaming for robust video transmission in mobile ad hoc networks. IEEE Wireless Communications, 13(5), 96-103. doi:10.1109/wc-m.2006.250365Iera, A., Molinaro, A., Paratore, S. Y., Ruggeri, G., & Zurzolo, A. (2011). Making a mesh router/gateway from a smartphone: Is that a practical solution? Ad Hoc Networks, 9(8), 1414-1429. doi:10.1016/j.adhoc.2011.03.00

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    RESP: Relay suitability-based routing protocol for video streaming in vehicular Ad Hoc Networks

    Get PDF
    Video streaming in Vehicular Ad Hoc Networks (VANETs) is a fundamental requirement for a roadside emergency and smart video surveillance services. However, vehicles moving at a high speed usually create unstable wireless links that drop video frames qualities. In a high-density network, network collision between vehicles is another obstacle in improving the scalability of unicast routing protocols. In this paper, the RElay Suitability-based Routing Protocol (RESP) which makes a routing decision based on the link stability measurement was proposed for an uninterrupted video streaming. The RESP estimates the geographic advancement and link stability of a vehicle towards its destination only in the small region. To ensure the reliability while extending the scalability of routing, the relay suitability metric integrates the packet delay, collision dropping, link stability, and the Expected Transmission Count (ETX) in the weighted division algorithm, and selects a high-quality forwarding node for video streaming. The experimental results demonstrated the proposed RESP outperformed the link Lifetime-aware Beacon-less Routing Protocol (LBRP) and other traditional geographical streaming protocols in providing a high packet delivery ratio and packet delay with various network densities, and proved the scalability support of RESP for video streaming

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    GPSR-TARS: congestion aware geographically targeted remote surveillance for VANETs

    Get PDF
    Video over vehicular networks continues to receive warranted attention, with envisioned applications having the potential to present entirely new opportunities and revolutionise existing services. Many video systems have been proposed, ranging from safety to advertising. We propose a novel system for VANETs, namely the TArgeted Remote Surveillance (TARS) module for the existing Greedy Perimeter Stateless Routing (GPSR) protocol which permits multiple mobile vehicles to request and receive live video feeds from vehicles within a select geographic region. The multi-hop, vehicle-to-vehicle system enables mobile units to surveil a target area in real time by leveraging the dashboard cameras of vehicles moving within the target region. We combine several proposed extensions to the core protocol to introduce a dynamic real time congestion aware clustering scheme to achieve this. Our proposed system is compared against existing routing protocols using mobility data from Nottingham. GPSR-TARS outperforms the protocols assessed in key criteria crucial for meeting the quality of service demands of live multimedia dissemination

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Smart Vehicles, Technologies and Main Applications in Vehicular Ad hoc Networks

    Get PDF
    Vehicular Ad hoc NETworks (VANETs) belong to a subcategory of traditional Mobile Ad hoc NETworks (MANETs). The main feature of VANETs is that mobile nodes are vehicles endowed with sophisticated “on-board” equipments, traveling on constrained paths (i.e., roads and lanes), and communicating each other for message exchange via Vehicle-to-Vehicle (V2V) communication protocols, as well as between vehicles and fixed road-side Access Points (i.e., wireless and cellular network infrastructure), in case of Vehicle-to-Infrastructure (V2I) communications. In this chapter we will introduce the state-of-the-art of recent technologies used in vehicular networks, specifically for smart vehicles, which require novel functionalities such as data communications, accurate positioning, control and decision monitoring
    corecore