919 research outputs found

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    Optimum traffic allocation in bundled energy-efficient ethernet links

    Get PDF
    The energy demands of Ethernet links have been an active focus of research in the recent years. This work has enabled a new generation of energy-efficient Ethernet (EEE) interfaces able to adapt their power consumption to the actual traffic demands, thus yielding significant energy savings. With the energy consumption of single network connections being a solved problem, in this paper, we focus on the energy demands of link aggregates that are commonly used to increase the capacity of a network connection. We build on known energy models of single EEE links to derive the energy demands of the whole aggregate as a function on how the traffic load is spread among its powered links. We then provide a practical method to share the load that minimizes overall energy consumption with controlled packet delay and prove that it is valid for a wide range of EEE links. Finally, we validate our method with both synthetic and real traffic traces captured in Internet backbones.Xunta de Galici

    Improving Energy Efficiency for IoT Communications in 5G Networks

    Get PDF
    Increase in number of Internet of Things (IoT) devices is quickly changing how mobile networks are being used by shifting more usage to uplink transmissions rather than downlink transmissions. Currently, mobile network uplinks utilize Single Carrier Frequency Division Multiple Access (SC-FDMA) schemes due to the low Peak to Average Power Ratio (PAPR) when compared to Orthogonal Frequency Division Multiple Access (OFDMA). In an IoT perspective, power ratios are highly important in effective battery usage since devices are typically resource-constrained. Fifth Generation (5G) mobile networks are believed to be the future standard network that will handle the influx of IoT device uplinks while preserving the quality of service (QoS) that current Long Term Evolution Advanced (LTE-A) networks provide. In this paper, the Enhanced OEA algorithm was proposed and simulations showed a reduction in the device energy consumption and an increase in the power efficiency of uplink transmissions while preserving the QoS rate provided with SC-FDMA in 5G networks. Furthermore, the computational complexity was reduced through insertion of a sorting step prior to resource allocation

    Performance Evaluation of Energy Efficient Policies for Ethernet Switches

    Get PDF
    International audienceEnergy efficiency has emerged as a defining scientific and engineering challenge of our time. Ethernet, as the dominant wireline technology, has been a focus of intense research and development efforts with the goal of significantly decreasing its energy consumption. In 2010 the IEEE Std 802.3az, which uses a Low Power Idle (LPI) mode to reduce the energy consumption of a link when there is no data traffic, was approved. Recently, the major manufacturers have brought to market the first switches the implement the new energy efficient standard. In this paper, we make use of the first generation of hardware that support the IEEE 802.3az to get a better understanding of the behavior of energy efficient mechanisms for ethernet. Based on measurement on DLINK switches that are IEEE 802.3az compliant, we build a power model that reflects more accurately the power used by real hardware in practice. We use the measurement-driven power model to analyze the behavior of Lazy Start, the state of the art algorithm for energy efficient ethernet, in the ns-3 simulator. Based on our analysis, we provide recommendations for improvements and potential directions for future work

    Towards low cost prototyping of mobile opportunistic disconnection tolerant networks and systems

    Get PDF
    Fast emerging mobile edge computing, mobile clouds, Internet of Things (IoT) and cyber physical systems require many novel realistic real time multi-layer algorithms for a wide range of domains, such as intelligent content provision and processing, smart transport, smart manufacturing systems and mobile end user applications. This paper proposes a low cost open source platform, MODiToNeS, which uses commodity hardware to support prototyping and testing of fully distributed multi-layer complex algorithms over real world (or pseudo real) traces. MODiToNeS platform is generic and comprises multiple interfaces that allow real time topology and mobility control, deployment and analysis of different self-organised and self-adaptive routing algorithms, real time content processing, and real time environment sensing with predictive analytics. Our platform also allows rich interactivity with the user. We show deployment and analysis of two vastly different complex networking systems: fault and disconnection aware smart manufacturing sensor network and cognitive privacy for personal clouds. We show that our platform design can integrate both contexts transparently and organically and allows a wide range of analysis
    • …
    corecore