298 research outputs found

    Improving Macrocell - Small Cell Coexistence through Adaptive Interference Draining

    Full text link
    The deployment of underlay small base stations (SBSs) is expected to significantly boost the spectrum efficiency and the coverage of next-generation cellular networks. However, the coexistence of SBSs underlaid to an existing macro-cellular network faces important challenges, notably in terms of spectrum sharing and interference management. In this paper, we propose a novel game-theoretic model that enables the SBSs to optimize their transmission rates by making decisions on the resource occupation jointly in the frequency and spatial domains. This procedure, known as interference draining, is performed among cooperative SBSs and allows to drastically reduce the interference experienced by both macro- and small cell users. At the macrocell side, we consider a modified water-filling policy for the power allocation that allows each macrocell user (MUE) to focus the transmissions on the degrees of freedom over which the MUE experiences the best channel and interference conditions. This approach not only represents an effective way to decrease the received interference at the MUEs but also grants the SBSs tier additional transmission opportunities and allows for a more agile interference management. Simulation results show that the proposed approach yields significant gains at both macrocell and small cell tiers, in terms of average achievable rate per user, reaching up to 37%, relative to the non-cooperative case, for a network with 150 MUEs and 200 SBSs

    Channel Selection for Network-assisted D2D Communication via No-Regret Bandit Learning with Calibrated Forecasting

    Full text link
    We consider the distributed channel selection problem in the context of device-to-device (D2D) communication as an underlay to a cellular network. Underlaid D2D users communicate directly by utilizing the cellular spectrum but their decisions are not governed by any centralized controller. Selfish D2D users that compete for access to the resources construct a distributed system, where the transmission performance depends on channel availability and quality. This information, however, is difficult to acquire. Moreover, the adverse effects of D2D users on cellular transmissions should be minimized. In order to overcome these limitations, we propose a network-assisted distributed channel selection approach in which D2D users are only allowed to use vacant cellular channels. This scenario is modeled as a multi-player multi-armed bandit game with side information, for which a distributed algorithmic solution is proposed. The solution is a combination of no-regret learning and calibrated forecasting, and can be applied to a broad class of multi-player stochastic learning problems, in addition to the formulated channel selection problem. Analytically, it is established that this approach not only yields vanishing regret (in comparison to the global optimal solution), but also guarantees that the empirical joint frequencies of the game converge to the set of correlated equilibria.Comment: 31 pages (one column), 9 figure

    Multi-cell interference management in In-band D2D communication under LTE-A network

    Get PDF
    Device-to-Device (D2D) communication is an active research area. As a part of this active research area, Device-to-Device (D2D) communication is largely exploited in Out-band non-cellular technologies, such as, Bluetooth or Wi-Fi network. However, it has not been fully incorporated into existing cellular networks. Interference management is the main challenge of this technology as it generates both intra and inter-cell interference resulting in severe network performance degradation. eNodeBs with high transmit power usually affects D2D user equipments (UEs) with high interference. It usually incurs severe interference to the cellular UEs and to the base station (eNB). The scenario becomes more critical in case of multi-cell environment, which is the main research focus in this paper. In order to encourage and increase frequent use of D2D communications, some changes in the network configuration are required for today’s networking scenario. Flexible multi-cell D2D communication is required to reduce the network load. Interference management techniques are necessary in parallel to make the communication smooth, efficient and effective.This paper reviews multi-cell interference in In-Band D2D communications and investigates interference mitigation techniques in scenarios where two or more similar or different devices under same eNB or from two different eNBs can be connected as a D2D pair without compromising user experience and quality of service standard. These issues cannot be guaranteed by the current applications operated on unlicensed frequency band. The research also addresses the following related issues: mode selection, resource allocation (both for cellular and D2D environment), power control (both for eNB and D2D pair), and flexible frequency allocation techniques. The research aims to look at other issues, such as, achieving high SINR, improved system capacity, better throughput and transmission rate

    Coalitional Games with Overlapping Coalitions for Interference Management in Small Cell Networks

    Full text link
    In this paper, we study the problem of cooperative interference management in an OFDMA two-tier small cell network. In particular, we propose a novel approach for allowing the small cells to cooperate, so as to optimize their sum-rate, while cooperatively satisfying their maximum transmit power constraints. Unlike existing work which assumes that only disjoint groups of cooperative small cells can emerge, we formulate the small cells' cooperation problem as a coalition formation game with overlapping coalitions. In this game, each small cell base station can choose to participate in one or more cooperative groups (or coalitions) simultaneously, so as to optimize the tradeoff between the benefits and costs associated with cooperation. We study the properties of the proposed overlapping coalition formation game and we show that it exhibits negative externalities due to interference. Then, we propose a novel decentralized algorithm that allows the small cell base stations to interact and self-organize into a stable overlapping coalitional structure. Simulation results show that the proposed algorithm results in a notable performance advantage in terms of the total system sum-rate, relative to the noncooperative case and the classical algorithms for coalitional games with non-overlapping coalitions

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    A Study Of Cooperative Spectrum Sharing Schemes For Internet Of Things Systems

    Get PDF
    The Internet of Things (IoT) has gained much attention in recent years with the massive increase in the number of connected devices. Cognitive Machine-to-Machine (CM2M) communications is a hot research topic in which a cognitive dimension allows M2M networks to overcome the challenges of spectrum scarcity, interference, and green requirements. In this paper, we propose a Generalized Cooperative Spectrum Sharing (GCSS) scheme for M2M communication. Cooperation extends the coverage of wireless networks as well as increasing their throughput while reducing the energy consumption of the connected low power devices. We study the outage performance of the proposed GCSS scheme for M2M system and derive exact expressions for the outage probability. We also analyze the effect of varying transmission powers on the performance of the system
    corecore