979 research outputs found

    Opportunistic Scheduling for Full-Duplex Uplink-Downlink Networks

    Full text link
    We study opportunistic scheduling and the sum capacity of cellular networks with a full-duplex multi-antenna base station and a large number of single-antenna half-duplex users. Simultaneous uplink and downlink over the same band results in uplink-to-downlink interference, degrading performance. We present a simple opportunistic joint uplink-downlink scheduling algorithm that exploits multiuser diversity and treats interference as noise. We show that in homogeneous networks, our algorithm achieves the same sum capacity as what would have been achieved if there was no uplink-to-downlink interference, asymptotically in the number of users. The algorithm does not require interference CSI at the base station or uplink users. It is also shown that for a simple class of heterogeneous networks without sufficient channel diversity, it is not possible to achieve the corresponding interference-free system capacity. We discuss the potential for using device-to-device side-channels to overcome this limitation in heterogeneous networks.Comment: 10 pages, 2 figures, to appear at IEEE International Symposium on Information Theory (ISIT) '1

    Joint User Scheduling and Power optimization in Full-Duplex Cells with Successive Interference Cancellation

    Full text link
    This paper considers a cellular system with a full-duplex base station and half-duplex users. The base station can activate one user in uplink or downlink (half-duplex mode), or two different users one in each direction simultaneously (full-duplex mode). Simultaneous transmissions in uplink and downlink causes self-interference at the base station and uplink-to-downlink interference at the downlink user. Although uplink-to-downlink interference is typically treated as noise, it is shown that successive interference decoding and cancellation (SIC mode) can lead to significant improvement in network utility, especially when user distribution is concentrated around a few hotspots. The proposed temporal fair user scheduling algorithm and corresponding power optimization utilizes full-duplex and SIC modes as well as half-duplex transmissions based on their impact on network utility. Simulation results reveal that the proposed strategy can achieve up to 95% average cell throughput improvement in typical indoor scenarios with respect to a conventional network in which the base station is half-duplex.Comment: To be appeared in IEEE Asilomar Conference on Signals, Systems, and Computers, 201
    • …
    corecore