560 research outputs found

    A low complexity resource allocation algorithm for multicast service delivery in OFDMA networks

    Get PDF
    Allocating and managing radio resources to multicast transmissions in Orthogonal Frequency-Division Multiple Access (OFDMA) systems is the challenging research issue addressed by this paper. A subgrouping technique, which divides the subscribers into subgroups according to the experienced channel quality, is considered to overcome the throughput limitations of conventional multicast data delivery schemes. A low complexity algorithm, designed to work with different resource allocation strategies, is also proposed to reduce the computational complexity of the subgroup formation problem. Simulation results, carried out by considering the Long Term Evolution (LTE) system based on OFDMA, testify the effectiveness of the proposed solution, which achieves a near-optimal performance with a limited computational load for the system

    Coordinated Multicasting with Opportunistic User Selection in Multicell Wireless Systems

    Full text link
    Physical layer multicasting with opportunistic user selection (OUS) is examined for multicell multi-antenna wireless systems. By adopting a two-layer encoding scheme, a rate-adaptive channel code is applied in each fading block to enable successful decoding by a chosen subset of users (which varies over different blocks) and an application layer erasure code is employed across multiple blocks to ensure that every user is able to recover the message after decoding successfully in a sufficient number of blocks. The transmit signal and code-rate in each block determine opportunistically the subset of users that are able to successfully decode and can be chosen to maximize the long-term multicast efficiency. The employment of OUS not only helps avoid rate-limitations caused by the user with the worst channel, but also helps coordinate interference among different cells and multicast groups. In this work, efficient algorithms are proposed for the design of the transmit covariance matrices, the physical layer code-rates, and the target user subsets in each block. In the single group scenario, the system parameters are determined by maximizing the group-rate, defined as the physical layer code-rate times the fraction of users that can successfully decode in each block. In the multi-group scenario, the system parameters are determined by considering a group-rate balancing optimization problem, which is solved by a successive convex approximation (SCA) approach. To further reduce the feedback overhead, we also consider the case where only part of the users feed back their channel vectors in each block and propose a design based on the balancing of the expected group-rates. In addition to SCA, a sample average approximation technique is also introduced to handle the probabilistic terms arising in this problem. The effectiveness of the proposed schemes is demonstrated by computer simulations.Comment: Accepted by IEEE Transactions on Signal Processin

    An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks

    Get PDF
    With high speed access network technology like WIMAX, there is the need for efficient management of radio resources where the throughput and Qos requirements for Multicasting Broadcasting Services (MBS) for example TV are to be met. An enhanced feedback-base downlink Packet scheduling algorithm that can be used in IEEE 802.16d/e networks for mobile TV “one way traffic”(MBS) is needed to support many users utilizing multiuser diversity of the broadband of WIMAX systems where a group of users(good/worst channels) share allocated resources (bandwidth). This paper proposes a WIMAX framework feedback-base (like a channel-awareness) downlink packet scheduling algorithm for Mobile TV traffics in IEEE806.16, in which network Physical Timing Slots (PSs) resource blocks are allocated in a dynamic way to mobile TV subscribers based on the Channel State information (CSI) feedback, and then considering users with worst channels with the aim of improving system throughput while system coverage is being guaranteed. The algorithm was examined by changing the PSs bandwidth allocation of the users and different number of users of a cell. Simulation results show our proposed algorithm performed better than other algorithms (blind algorithms) in terms of improvement in system throughput performance. Doi: 10.12777/ijse.5.1.55-62 [How to cite this article: Oyewale, J. and , Juan, L.X.. (2013). An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks. International Journal of Science and Engineering, 5(1),55-62. Doi: 10.12777/ijse.5.1.55-62

    Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey

    Get PDF
    Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS)requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems

    Multicast Systems with Fair Scheduling in Non-identically Distributed Fading Channels

    Full text link
    © 1967-2012 IEEE. Multicasting is emerging as an efficient method to deliver the same data to a group of users, thereby saving network resources. The fairness between different multicast groups is an important quality-of-service (QoS) indication, but it has not been given significant attention. In this paper, we propose a normalized signal-To-noise ratio (SNR)-based fair scheduling for multiple multicast groups in multicast systems. The system fairness and capacity are then analyzed and compared for both fair scheduling and greedy scheduling over independent but non-identically distributed (i.n.d.) fading channels. Closed-form expressions in terms of the system spectral efficiency, outage probability, system fairness, and average bit error rate (BER) are derived in an uncoded/coded M-Ary quadrature amplitude modulation based adaptive transmission multicast system over i.n.d. Rayleigh fading channels. Numerical results show that compared with greedy scheduling, fair scheduling achieves considerably high fairness at the cost of slight system capacity loss, regardless of the number of multicast groups. Our focus is on the physical layer without rate loss, but we also briefly discuss applications of the proposed scheduling in a cross-layer design subject to the loss rate QoS constraint
    • …
    corecore