644 research outputs found

    Human-mobility-based sensor context-aware routing protocol for delay-tolerant data gathering in multi-sink cell-phone-based sensor networks

    Get PDF
    Ubiquitous use of cell phones encourages development of novel applications with sensors embedded in cell phones. The collection of information generated by these devices is a challenging task considering volatile topologies and energy-based scarce resources. Further, the data delivery to the sink is delay tolerant. Mobility of cell phones is opportunistically exploited for forwarding sensor generated data towards the sink. Human mobility model shows truncated power law distribution of flight length, pause time, and intercontact time. The power law behavior of inter-contact time often discourages routing of data using naive forwarding schemes. This work exploits the flight length and the pause time distributions of human mobility to design a better and efficient routing strategy. We propose a Human-Mobility-based Sensor Context-Aware Routing protocol (HMSCAR), which exploits human mobility patterns to smartly forward data towards the sink basically comprised of wi-fi hot spots or cellular base stations. The simulation results show that HMSCAR significantly outperforms the SCAR, SFR, and GRAD-MOB on the aspects of delivery ratio and time delay. A multi-sink scenario and single-copy replication scheme is assumed

    On the integration of interest and power awareness in social-aware opportunistic forwarding algorithms

    Get PDF
    Social-aware Opportunistic forwarding algorithms are much needed in environments which lack network infrastructure or in those that are susceptible to frequent disruptions. However, most of these algorithms are oblivious to both the user’s interest in the forwarded content and the limited power resources of the available mobile nodes. This paper proposes PI-SOFA, a framework for integrating the awareness of both interest and power capability of a candidate node within the forwarding decision process. Furthermore, the framework adapts its forwarding decisions to the expected contact duration between message carriers and candidate nodes. The proposed framework is applied to three state-of-the-art social-aware opportunistic forwarding algorithms that target mobile opportunistic message delivery. A simulation-based performance evaluation demonstrates the improved effectiveness, efficiency, reduction of power consumption, and fair utilization of the proposed versions in comparison to those of the original algorithms. The results show more than 500% extra f-measure, mainly by disregarding uninterested nodes while focusing on the potentially interested ones. Moreover, power awareness preserves up to 8% power with 41% less cost to attain higher utilization fairness by focusing on power-capable interested nodes. Finally, this paper analyzes the proposed algorithms’ performance across various environments. These findings can benefit message delivery in opportunistic mobile networks

    SAROS: A social-aware opportunistic forwarding simulator

    Get PDF
    Many applications are being developed to leverage the popularity of mobile opportunistic networks. However, building adaptive testbeds can be costly and challenging. This challenge motivates the need for effective opportunistic network simulators to provide a variety of opportunistic environment setups, and evaluate proposed applications and protocols with a comprehensive set of metrics. This paper presents SAROS, a simulator of opportunistic networking environments with a variety of interest distributions, power consumption distributions, imported real traces, and social network integration. The simulator provides a wide variety of evaluation metrics that are not offered by comparable simulators. Finally, SAROS also implements several opportunistic forwarding algorithms ranging from social-oblivious algorithms to interest and power-aware social-based algorithms

    Social pervasive systems: the harmonization between social networking and pervasive systems

    Get PDF
    The recent advancement in mobile device sensor technology, coupled with the wealth of structured accessible data of social networks, form a very data-wealthy ecosystem. Such an ecosystem is rich in bi-directional context that can flow between the mobile and social worlds enabling the creation of an elitist breed of pervasive services and applications. We label the breed resulting from the merger as Social Pervasive Systems (SPS)

    PIPeR: Impact of power-awareness on social-based opportunistic advertising

    Get PDF
    Interest and social-awareness can be valuable determinants in decisions related to content delivery in mobile environments. Under certain conditions, we can deliver content with less cost and better delivery ratios, while only involving users that are interested in the type of content being delivered. However, the depletion of valuable power resources poses a deterrent to node participation in such interest-aware forwarding systems. No significant research contribution has been identified to collectively maximize the benefits of social, interest, and power awareness. In this work, we propose a new algorithm called PIPeR which integrates power awareness with an interest and socially aware forwarding algorithm called IPeR. Through simulations, we present and evaluate four modes of PIPeR. The results show that PIPeR is more fair and preserves at least 22% of the power IPeR consumes with less delay, while relying significantly on interested forwarders and with comparable cost to maintain similar delivery ratios

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    CHARON: Routing in low-density opportunistic wireless sensor networks

    Get PDF
    Combining wireless sensor networks (WSNs) with delay-tolerant networking (DTN) has the potential to extend their use in a multitude of previously impossible applications. However, and despite numerous proposed solutions, there is still wide debate as to how to best route messages in these networks and, more importantly, how to do it in an energy-efficient way. This paper proposes CHARON (Convergent Hybrid-replication Approach to Routing in Opportunistic Networks), an approach that focuses on maximizing efficiency in addition to delivery statistics. CHARON uses delay as a routing metric, and provides basic QoS mechanisms, with both a quasi-single-copy mode for general traffic and a multi-copy mode for urgent data. It also integrates time synchronization and radio power management mechanisms. Simulation results show that it is able to achieve good delivery statistics with lower overhead than comparable solutions

    Delivering 21st century Antarctic and Southern Ocean science

    Get PDF
    The Antarctic Roadmap Challenges (ARC) project identified critical requirements to deliver high priority Antarctic research in the 21st century. The ARC project addressed the challenges of enabling technologies, facilitating access, providing logistics and infrastructure, and capitalizing on international co-operation. Technological requirements include: i) innovative automated in situ observing systems, sensors and interoperable platforms (including power demands), ii) realistic and holistic numerical models, iii) enhanced remote sensing and sensors, iv) expanded sample collection and retrieval technologies, and v) greater cyber-infrastructure to process ‘big data’ collection, transmission and analyses while promoting data accessibility. These technologies must be widely available, performance and reliability must be improved and technologies used elsewhere must be applied to the Antarctic. Considerable Antarctic research is field-based, making access to vital geographical targets essential. Future research will require continent- and ocean-wide environmentally responsible access to coastal and interior Antarctica and the Southern Ocean. Year-round access is indispensable. The cost of future Antarctic science is great but there are opportunities for all to participate commensurate with national resources, expertise and interests. The scope of future Antarctic research will necessitate enhanced and inventive interdisciplinary and international collaborations. The full promise of Antarctic science will only be realized if nations act together

    A shared opportunistic infrastructure for long-lived wireless sensor networks

    Get PDF
    In this paper, a Shared Opportunistic Infrastructure (SOI) is proposed to reduce total cost of ownership for long-lived wireless sensor networks through exploiting human mobility. More specifically, various sensor nodes are opportunistically connected with their corresponding servers through smart phones carried by people in their daily life. In this paper, we will introduce the motivations, present the architecture, discuss the feasibility, and identify several research opportunities of SOI
    corecore