3,073 research outputs found

    Numerical methods for queues with shared service

    Get PDF
    A queueing system is a mathematical abstraction of a situation where elements, called customers, arrive in a system and wait until they receive some kind of service. Queueing systems are omnipresent in real life. Prime examples include people waiting at a counter to be served, airplanes waiting to take off, traffic jams during rush hour etc. Queueing theory is the mathematical study of queueing phenomena. As often neither the arrival instants of the customers nor their service times are known in advance, queueing theory most often assumes that these processes are random variables. The queueing process itself is then a stochastic process and most often also a Markov process, provided a proper description of the state of the queueing process is introduced. This dissertation investigates numerical methods for a particular type of Markovian queueing systems, namely queueing systems with shared service. These queueing systems differ from traditional queueing systems in that there is simultaneous service of the head-of-line customers of all queues and in that there is no service if there are no customers in one of the queues. The absence of service whenever one of the queues is empty yields particular dynamics which are not found in traditional queueing systems. These queueing systems with shared service are not only beautiful mathematical objects in their own right, but are also motivated by an extensive range of applications. The original motivation for studying queueing systems with shared service came from a particular process in inventory management called kitting. A kitting process collects the necessary parts for an end product in a box prior to sending it to the assembly area. The parts and their inventories being the customers and queues, we get ``shared service'' as kitting cannot proceed if some parts are absent. Still in the area of inventory management, the decoupling inventory of a hybrid make-to-stock/make-to-order system exhibits shared service. The production process prior to the decoupling inventory is make-to-stock and driven by demand forecasts. In contrast, the production process after the decoupling inventory is make-to-order and driven by actual demand as items from the decoupling inventory are customised according to customer specifications. At the decoupling point, the decoupling inventory is complemented with a queue of outstanding orders. As customisation only starts when the decoupling inventory is nonempty and there is at least one order, there is again shared service. Moving to applications in telecommunications, shared service applies to energy harvesting sensor nodes. Such a sensor node scavenges energy from its environment to meet its energy expenditure or to prolong its lifetime. A rechargeable battery operates very much like a queue, customers being discretised as chunks of energy. As a sensor node requires both sensed data and energy for transmission, shared service can again be identified. In the Markovian framework, "solving" a queueing system corresponds to finding the steady-state solution of the Markov process that describes the queueing system at hand. Indeed, most performance measures of interest of the queueing system can be expressed in terms of the steady-state solution of the underlying Markov process. For a finite ergodic Markov process, the steady-state solution is the unique solution of N1N-1 balance equations complemented with the normalisation condition, NN being the size of the state space. For the queueing systems with shared service, the size of the state space of the Markov processes grows exponentially with the number of queues involved. Hence, even if only a moderate number of queues are considered, the size of the state space is huge. This is the state-space explosion problem. As direct solution methods for such Markov processes are computationally infeasible, this dissertation aims at exploiting structural properties of the Markov processes, as to speed up computation of the steady-state solution. The first property that can be exploited is sparsity of the generator matrix of the Markov process. Indeed, the number of events that can occur in any state --- or equivalently, the number of transitions to other states --- is far smaller than the size of the state space. This means that the generator matrix of the Markov process is mainly filled with zeroes. Iterative methods for sparse linear systems --- in particular the Krylov subspace solver GMRES --- were found to be computationally efficient for studying kitting processes only if the number of queues is limited. For more queues (or a larger state space), the methods cannot calculate the steady-state performance measures sufficiently fast. The applications related to the decoupling inventory and the energy harvesting sensor node involve only two queues. In this case, the generator matrix exhibits a homogene block-tridiagonal structure. Such Markov processes can be solved efficiently by means of matrix-geometric methods, both in the case that the process has finite size and --- even more efficiently --- in the case that it has an infinite size and a finite block size. Neither of the former exact solution methods allows for investigating systems with many queues. Therefore we developed an approximate numerical solution method, based on Maclaurin series expansions. Rather than focussing on structural properties of the Markov process for any parameter setting, the series expansion technique exploits structural properties of the Markov process when some parameter is sent to zero. For the queues with shared exponential service and the service rate sent to zero, the resulting process has a single absorbing state and the states can be ordered such that the generator matrix is upper-diagonal. In this case, the solution at zero is trivial and the calculation of the higher order terms in the series expansion around zero has a computational complexity proportional to the size of the state space. This is a case of regular perturbation of the parameter and contrasts to singular perturbation which is applied when the service times of the kitting process are phase-type distributed. For singular perturbation, the Markov process has no unique steady-state solution when the parameter is sent to zero. However, similar techniques still apply, albeit at a higher computational cost. Finally we note that the numerical series expansion technique is not limited to evaluating queues with shared service. Resembling shared queueing systems in that a Markov process with multidimensional state space is considered, it is shown that the regular series expansion technique can be applied on an epidemic model for opinion propagation in a social network. Interestingly, we find that the series expansion technique complements the usual fluid approach of the epidemic literature

    Connecting the Dots: Range Expansions across Landscapes with Quenched Noise

    Full text link
    When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between sub-populations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched-random noise provided by a heterogeneous environment. Using a multi-species Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, when the heterogeneity is sufficiently strong, the population front is dominated by genealogical lineages that are pinned to a small number of optimal paths. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.Comment: 17 pages, 11 figure

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    Theoretical and experimental approaches for the initiation and propagation of activity in spatially embedded neuronal cultures

    Get PDF
    [eng] Spatial embedding and inherited metric constraints are a fundamental trait of biological neuronal circuits. However their role in shaping connectivity and dynamics has been often disregarded, with models of neuronal networks paying much more attention to the distribution of connections in the quest for understanding network's behavior. In this thesis we aim at filling this gap by studying the importance of metric features in the complex connectivity- dynamics-noise interplay that shapes spontaneous neuronal activity. This thesis combines experiments in rat dissociated neuronal cultures with theoretical analyses to better comprehend the relevance of spatial embedding. We developed a new theoretical model grounded on Ising Models to assess metric effects in neuronal cultures' behavior, and in the context of percolation approaches. Once metric effects were settled, we illustrated their relevance in shaping spontaneous activity by perturbing the structural connectivity blueprint of neuronal cultures. This was achieved by patterning the substrate where neurons grow, and by using topographical molds that dictated the connectivity of the network. Next, and since the initiation of bursting activity is governed in great manner by a complex amplification mechanism that involves metric correlations and noise, we focused on the metric-driven amplification of spontaneous single-neuron noise to derive an analytical model that predicts the frequency of bursting events in neuronal cultures. We then further investigated in an experimental context the contribution of noise to the observed activity patterns, and by implementing a moderate electrical stimulation protocol that increases the level of activity noise in cultures. Finally, the latter study was completed with experiments regarding the specific role of inhibition in neuronal networks, to provide a wider understanding of the mechanisms that govern the initiation and propagation of activity fronts in cortical cultures.[cat] L'objectiu d'aquesta tesis és investigar els mecanismes que generen l'activitat espontània i estimulada en xarxes neuronals, més concretament en cultius corticals dissociats, i fent un especial èmfasi en l’efecte de les correlacions mètriques. En aquest marc, l’activitat col·lectiva consisteix en episodis esporàdics de dispars quasi sincronitzats entre totes les neurones del cultiu, anomenats “esclats de xarxa”. Tres elements principals en determinen les característiques: connectivitat entre neurones, dinàmica intrínseca neuronal, i soroll (activacions neuronals aleatòries). La investigació s’ha centrat en cinc línies de recerca: l’estudi de correlacions mètriques en cultius neuronals; el desenvolupament d’un model teòric per descriure i predir l’esclat de xarxa; l’anàlisi de la propagació dels fronts d’activitat experimentals sota pertorbacions estructurals de la connectivitat del cultiu; l’estudi de l’efecte de la inhibició en la iniciació i propagació dels esclats ‘in vitro’; i l’estudi de la resposta experimental dels cultius sota una estimulació elèctrica moderada de baixa freqüència. En la primera línia de recerca hem comprovat que les correlacions mètriques dominen el comportament dinàmic del cultiu, fins al punt d’emmascarar la contribució de la distribució del nombre de connexions. En la segona línia hem desenvolupat un model analític que prediu semi- quantitativament la freqüència dels esclats observada experimentalment. La tercera línia s’ha centrat en l’efecte de pertorbacions estructurals en la connectivitat; la dinàmica resultant ha mostrat una gran riquesa en patrons d’activitat, esclats de xarxa a diferents escales, i propagació altament específica de cada cultiu. La quarta línia de recerca ha demostrat que les xarxes sense inhibició disminueixen la seva freqüència d’esclat respecte a les xarxes control, que la velocitat de propagació de l’activitat incrementa lleugerament quan s’ha bloquejat la inhibició, i que els punts on s’inicien ens esclats varien respecte als controls. I, finalment, la cinquena línia de recerca ha constatat que l’aplicació d’un camp elèctric feble augmenta el soroll d’activitat de la xarxa, generant un increment en la freqüència dels esclats de xarxa

    Diffusion and Supercritical Spreading Processes on Complex Networks

    Get PDF
    Die große Menge an Datensätzen, die in den letzten Jahren verfügbar wurden, hat es ermöglicht, sowohl menschlich-getriebene als auch biologische komplexe Systeme in einem beispiellosen Ausmaß empirisch zu untersuchen. Parallel dazu ist die Vorhersage und Kontrolle epidemischer Ausbrüche für Fragen der öffentlichen Gesundheit sehr wichtig geworden. In dieser Arbeit untersuchen wir einige wichtige Aspekte von Diffusionsphänomenen und Ausbreitungsprozeßen auf Netzwerken. Wir untersuchen drei verschiedene Probleme im Zusammenhang mit Ausbreitungsprozeßen im überkritischen Regime. Zunächst untersuchen wir die Reaktionsdiffusion auf Ensembles zufälliger Netzwerke, die durch die beobachteten Levy-Flugeigenschaften der menschlichen Mobilität charakterisiert sind. Das zweite Problem ist die Schätzung der Ankunftszeiten globaler Pandemien. Zu diesem Zweck leiten wir geeignete verborgene Geometrien netzgetriebener Streuprozeße, unter Nutzung der Random-Walk-Theorie, her und identifizieren diese. Durch die Definition von effective distances wird das Problem komplexer raumzeitlicher Muster auf einfache, homogene Wellenausbreitungsmuster reduziert. Drittens führen wir durch die Einbettung von Knoten in den verborgenen Raum, der durch effective distances im Netzwerk definiert ist, eine neuartige Netzwerkzentralität ein, die ViralRank genannt wird und quantifiziert, wie nahe ein Knoten, im Durchschnitt, den anderen Knoten im Netzwerk ist. Diese drei Studien bilden einen einheitlichen Rahmen zur Charakterisierung von Diffusions- und Ausbreitungsprozeßen, die sich auf komplexen Netzwerken allgemein abzeichnen, und bieten neue Ansätze für herausfordernde theoretische Probleme, die für die Bewertung künftiger Modelle verwendet werden können.The large amount of datasets that became available in recent years has made it possible to empirically study humanly-driven, as well as biological complex systems to an unprecedented extent. In parallel, the prediction and control of epidemic outbreaks have become very important for public health issues. In this thesis, we investigate some important aspects of diffusion phenomena and spreading processes unfolding on networks. We study three different problems related to spreading processes in the supercritical regime. First, we study reaction-diffusion on ensembles of random networks characterized by the observed Levy-flight properties of human mobility. The second problem is the estimation of the arrival times of global pandemics. To this end, we derive and identify suitable hidden geometries of network-driven spreading processes, leveraging on random-walk theory. Through the definition of network effective distances, the problem of complex spatiotemporal patterns is reduced to simple, homogeneous wave propagation patterns. Third, by embedding nodes in the hidden space defined by network effective distances, we introduce a novel network centrality, called ViralRank, which quantifies how close a node is, on average, to the other nodes. These three studies constitute a unified framework to characterize diffusion and spreading processes unfolding on complex networks in very general settings, and provide new approaches to challenging theoretical problems that can be used to benchmark future models

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B
    corecore