164 research outputs found

    Aggregation-based Multilevel Methods for Lattice QCD

    Full text link
    In Lattice QCD computations a substantial amount of work is spent in solving the Dirac equation. In the recent past it has been observed that conventional Krylov solvers tend to critically slow down for large lattices and small quark masses. We present a Schwarz alternating procedure (SAP) multilevel method as a solver for the Clover improved Wilson discretization of the Dirac equation. This approach combines two components (SAP and algebraic multigrid) that have separately been used in lattice QCD before. In combination with a bootstrap setup procedure we show that considerable speed-up over conventional Krylov subspace methods for realistic configurations can be achieved.Comment: Talk presented at the XXIX International Symposium on Lattice Field Theory, July 10-16, 2011, Lake Tahoe, Californi

    Adaptive Aggregation Based Domain Decomposition Multigrid for the Lattice Wilson Dirac Operator

    Get PDF
    In lattice QCD computations a substantial amount of work is spent in solving discretized versions of the Dirac equation. Conventional Krylov solvers show critical slowing down for large system sizes and physically interesting parameter regions. We present a domain decomposition adaptive algebraic multigrid method used as a precondtioner to solve the "clover improved" Wilson discretization of the Dirac equation. This approach combines and improves two approaches, namely domain decomposition and adaptive algebraic multigrid, that have been used seperately in lattice QCD before. We show in extensive numerical test conducted with a parallel production code implementation that considerable speed-up over conventional Krylov subspace methods, domain decomposition methods and other hierarchical approaches for realistic system sizes can be achieved.Comment: Additional comparison to method of arXiv:1011.2775 and to mixed-precision odd-even preconditioned BiCGStab. Results of numerical experiments changed slightly due to more systematic use of odd-even preconditionin

    A Self-learning Algebraic Multigrid Method for Extremal Singular Triplets and Eigenpairs

    Full text link
    A self-learning algebraic multigrid method for dominant and minimal singular triplets and eigenpairs is described. The method consists of two multilevel phases. In the first, multiplicative phase (setup phase), tentative singular triplets are calculated along with a multigrid hierarchy of interpolation operators that approximately fit the tentative singular vectors in a collective and self-learning manner, using multiplicative update formulas. In the second, additive phase (solve phase), the tentative singular triplets are improved up to the desired accuracy by using an additive correction scheme with fixed interpolation operators, combined with a Ritz update. A suitable generalization of the singular value decomposition is formulated that applies to the coarse levels of the multilevel cycles. The proposed algorithm combines and extends two existing multigrid approaches for symmetric positive definite eigenvalue problems to the case of dominant and minimal singular triplets. Numerical tests on model problems from different areas show that the algorithm converges to high accuracy in a modest number of iterations, and is flexible enough to deal with a variety of problems due to its self-learning properties.Comment: 29 page

    A robust adaptive algebraic multigrid linear solver for structural mechanics

    Full text link
    The numerical simulation of structural mechanics applications via finite elements usually requires the solution of large-size and ill-conditioned linear systems, especially when accurate results are sought for derived variables interpolated with lower order functions, like stress or deformation fields. Such task represents the most time-consuming kernel in commercial simulators; thus, it is of significant interest the development of robust and efficient linear solvers for such applications. In this context, direct solvers, which are based on LU factorization techniques, are often used due to their robustness and easy setup; however, they can reach only superlinear complexity, in the best case, thus, have limited applicability depending on the problem size. On the other hand, iterative solvers based on algebraic multigrid (AMG) preconditioners can reach up to linear complexity for sufficiently regular problems but do not always converge and require more knowledge from the user for an efficient setup. In this work, we present an adaptive AMG method specifically designed to improve its usability and efficiency in the solution of structural problems. We show numerical results for several practical applications with millions of unknowns and compare our method with two state-of-the-art linear solvers proving its efficiency and robustness.Comment: 50 pages, 16 figures, submitted to CMAM
    corecore