4,915 research outputs found

    Preprototype nitrogen supply subsystem development

    Get PDF
    The design and development of a test stand for the Nitrogen Generation Module (NGM) and a series of tests which verified its operation and performance capability are described. Over 900 hours of parametric testing were achieved. The results from this testing were then used to design an advanced NGM and a self contained, preprototype Nitrogen Supply Subsystem. The NGM consists of three major components: nitrogen generation module, pressure controller and hydrazine storage tank and ancillary components. The most important improvement is the elimination of all sealing surfaces, achieved with a total welded or brazed construction. Additionally, performance was improved by increasing hydrogen separating capability by 20% with no increase in overall packaging size

    Identificación y detección de fallas en accionamiento utilizando NN-NARX

    Get PDF
    In this paper, the use of a Nonlinear Auto Regressive eXogenous Neural Networks model or NN-NARX for identification and fault detection in the actuator of an industrial thermal process is presented. Initially, the techniques of fault detection and diagnosis are exposed; then, emphasis is placed on the models of Artificial Neural Networks for identification and fault detection. Subsequently, the control system of a thermal process used as a case study is described. A monitoring system allows data recording under normal operation conditions for identification using the NN-NARX model. The model is used for residual online generation due to faults that are introduced randomly. Finally, the results of residual generation and evaluation are presented. The designed system is useful for implementation through a hardware device that can be incorporated into the process equipment and support the operator in the presence of failures.En este artículo se presenta la utilización de un modelo de Red Neuronal no lineal Auto Regresivo de Variable Exógena o NN-NARX (por sus siglas en inglés), para la identificación y detección de fallas en un accionamiento de un proceso térmico industrial. Inicialmente, se exponen las técnicas de detección y diagnóstico de fallas; luego, se hace énfasis en los modelos de Redes Neuronales Artificiales para identificación y detección de fallas. Posteriormente, se describe el sistema de control de un proceso térmico utilizado como caso de estudio. Un sistema de monitorización permite el registro de datos en condiciones normales de operación para la identificación usando el modelo NN-NARX. El modelo es utilizado para la generación en línea de residuos ante fallas que son introducidas aleatoriamente. Finalmente, se presentan los resultados de la generación y evaluación de residuos. El sistema diseñado es útil para la implementación a través de un dispositivo hardware que puede incorporarse en el equipo del proceso y apoyar al operador ante la presencia de fallas

    Advanced instrumentation concepts for environmental control subsystems

    Get PDF
    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface

    Process operating mode monitoring : switching online the right controller

    Get PDF
    This paper presents a structure which deals with process operating mode monitoring and allows the control law reconfiguration by switching online the right controller. After a short review of the advances in switching based control systems during the last decade, we introduce our approach based on the definition of operating modes of a plant. The control reconfiguration strategy is achieved by online selection of an adequate controller, in a case of active accommodation. The main contribution lies in settling up the design steps of the multicontroller structure and its accurate integration in the operating mode detection and accommodation loop. Simulation results show the effectiveness of the operating mode detection and accommodation (OMDA) structure for which the design steps propose a method to study the asymptotic stability, switching performances improvement, and the tuning of the multimodel based detector

    Development of an ontology supporting failure analysis of surface safety valves used in Oil & Gas applications

    Get PDF
    Treball desenvolupat dins el marc del programa 'European Project Semester'.The project describes how to apply Root Cause Analysis (RCA) in the form of a Failure Mode Effect and Criticality Analysis (FMECA) on hydraulically actuated Surface Safety Valves (SSVs) of Xmas trees in oil and gas applications, in order to be able to predict the occurrence of failures and implement preventive measures such as Condition and Performance Monitoring (CPM) to improve the life-span of a valve and decrease maintenance downtime. In the oil and gas industry, valves account for 52% of failures in the system. If these failures happen unexpectedly it can cause a lot of problems. Downtime of the oil well quickly becomes an expensive problem, unscheduled maintenance takes a lot of extra time and the lead-time for replacement parts can be up to 6 months. This is why being able to predict these failures beforehand is something that can bring a lot of benefits to a company. To determine the best course of action to take in order to be able to predict failures, a FMECA report is created. This is an analysis where all possible failures of all components are catalogued and given a Risk Priority Number (RPN), which has three variables: severity, detectability and occurrence. Each of these is given a rating between 0 and 10 and then the variables are multiplied with each other, resulting in the RPN. The components with an RPN above an acceptable risk level are then further investigated to see how to be able to detect them beforehand and how to mitigate the risk that they pose. Applying FMECA to the SSV mean breaking the system down into its components and determining the function, dependency and possible failures. To this end, the SSV is broken up into three sub-systems: the valve, the actuator and the hydraulic system. The hydraulic system is the sub-system of the SSV responsible for containing, transporting and pressurizing of the hydraulic fluid and in turn, the actuator. It also contains all the safety features, such as pressure pilots, and a trip system in case a problem is detected in the oil line. The actuator is, as the name implies, the sub-system which opens and closes the valve. It is made up of a number of parts such as a cylinder, a piston and a spring. These parts are interconnected in a number of ways to allow the actuator to successfully perform its function. The valve is the actual part of the system which interacts with the oil line by opening and closing. Like the actuator, this sub-system is broken down into a number of parts which work together to perform its function. After breaking down and defining each subsystem on a functional level, a model was created using a functional block diagram. Each component also allows for the defining of dependencies and interactions between the different components and a failure diagram for each component. This model integrates the three sub-systems back into one, creating a complete picture of the entire system which can then be used to determine the effects of different failures in components to the rest of the system. With this model completed we created a comprehensive FMECA report and test the different possible CPM solutions to mitigate the largest risks

    A two-level structure for advanced space power system automation

    Get PDF
    The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed

    Advanced CO2 removal process control and monitor instrumentation development

    Get PDF
    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom

    Fault diagnostic instrumentation design for environmental control and life support systems

    Get PDF
    As a development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. As part of continous development efforts, a program to evaluate, design, and demonstrate advanced instrumentation fault diagnostics was successfully completed. Fault tolerance designs for reliability and other instrumenation capabilities to increase maintainability were evaluated and studied

    Nuclear Thermal Rocket Engine Control Autonomy Via Embedded Decision

    Get PDF
    This doctoral dissertation presents an investigation of embedded decision capabilities as a means for developing nuclear reactor autonomous control. Nuclear thermal propulsion (NTP) is identified as a high priority technology for development, and is the focus of this research. First, a background investigation is presented on the state of the art in nuclear thermal rocket (NTR) engine control and modeling practices, resulting in the development of a low order NTR engine dynamic model based on the literature. The engine model was used to perform the following investigation, and is intended to serve as a research platform for the future development of autonomous control in NTR engines. Next, since embedded decision techniques are argued to be the basis for autonomous control, additional background is provided on autonomy and embedded decision. This background served as the basis for this investigation, resulting in the first application of utility based decision in an NTR engine control system (ECS). The decision system was developed to accommodate faults detected in the primary control system, and is based on expected actuator availability. The behavior resulting from the actuator availability attribute was considered overly sensitive to perceived faults, and attributes based on engine performance are recommended for further development of the utility based decision approach. In addition to the research platform and the findings it produced, this work resulted in a collection of tools for future use in further research of engine modeling, control, and applications of embedded decision to NTR engine control
    corecore