3,513 research outputs found

    HH-product and HH-threshold graphs

    Full text link
    This paper is the continuation of the research of the author and his colleagues of the {\it canonical} decomposition of graphs. The idea of the canonical decomposition is to define the binary operation on the set of graphs and to represent the graph under study as a product of prime elements with respect to this operation. We consider the graph together with the arbitrary partition of its vertex set into nn subsets (nn-partitioned graph). On the set of nn-partitioned graphs distinguished up to isomorphism we consider the binary algebraic operation H\circ_H (HH-product of graphs), determined by the digraph HH. It is proved, that every operation H\circ_H defines the unique factorization as a product of prime factors. We define HH-threshold graphs as graphs, which could be represented as the product H\circ_{H} of one-vertex factors, and the threshold-width of the graph GG as the minimum size of HH such, that GG is HH-threshold. HH-threshold graphs generalize the classes of threshold graphs and difference graphs and extend their properties. We show, that the threshold-width is defined for all graphs, and give the characterization of graphs with fixed threshold-width. We study in detail the graphs with threshold-widths 1 and 2

    Modular Decomposition and the Reconstruction Conjecture

    Get PDF
    We prove that a large family of graphs which are decomposable with respect to the modular decomposition can be reconstructed from their collection of vertex-deleted subgraphs.Comment: 9 pages, 2 figure

    Edge reconstruction of the Ihara zeta function

    Get PDF
    We show that if a graph GG has average degree dˉ4\bar d \geq 4, then the Ihara zeta function of GG is edge-reconstructible. We prove some general spectral properties of the edge adjacency operator TT: it is symmetric for an indefinite form and has a "large" semi-simple part (but it can fail to be semi-simple in general). We prove that this implies that if dˉ>4\bar d>4, one can reconstruct the number of non-backtracking (closed or not) walks through a given edge, the Perron-Frobenius eigenvector of TT (modulo a natural symmetry), as well as the closed walks that pass through a given edge in both directions at least once. The appendix by Daniel MacDonald established the analogue for multigraphs of some basic results in reconstruction theory of simple graphs that are used in the main text.Comment: 19 pages, 2 pictures, in version 2 some minor changes and now including an appendix by Daniel McDonal

    Some Ulam's reconstruction problems for quantum states

    Full text link
    Provided a complete set of putative kk-body reductions of a multipartite quantum state, can one determine if a joint state exists? We derive necessary conditions for this to be true. In contrast to what is known as the quantum marginal problem, we consider a setting where the labeling of the subsystems is unknown. The problem can be seen in analogy to Ulam's reconstruction conjecture in graph theory. The conjecture - still unsolved - claims that every graph on at least three vertices can uniquely be reconstructed from the set of its vertex-deleted subgraphs. When considering quantum states, we demonstrate that the non-existence of joint states can, in some cases, already be inferred from a set of marginals having the size of just more than half of the parties. We apply these methods to graph states, where many constraints can be evaluated by knowing the number of stabilizer elements of certain weights that appear in the reductions. This perspective links with constraints that were derived in the context of quantum error-correcting codes and polynomial invariants. Some of these constraints can be interpreted as monogamy-like relations that limit the correlations arising from quantum states. Lastly, we provide an answer to Ulam's reconstruction problem for generic quantum states.Comment: 22 pages, 3 figures, v2: significantly revised final versio

    Clustering from Sparse Pairwise Measurements

    Get PDF
    We consider the problem of grouping items into clusters based on few random pairwise comparisons between the items. We introduce three closely related algorithms for this task: a belief propagation algorithm approximating the Bayes optimal solution, and two spectral algorithms based on the non-backtracking and Bethe Hessian operators. For the case of two symmetric clusters, we conjecture that these algorithms are asymptotically optimal in that they detect the clusters as soon as it is information theoretically possible to do so. We substantiate this claim for one of the spectral approaches we introduce

    The mixing time of the switch Markov chains: a unified approach

    Get PDF
    Since 1997 a considerable effort has been spent to study the mixing time of switch Markov chains on the realizations of graphic degree sequences of simple graphs. Several results were proved on rapidly mixing Markov chains on unconstrained, bipartite, and directed sequences, using different mechanisms. The aim of this paper is to unify these approaches. We will illustrate the strength of the unified method by showing that on any PP-stable family of unconstrained/bipartite/directed degree sequences the switch Markov chain is rapidly mixing. This is a common generalization of every known result that shows the rapid mixing nature of the switch Markov chain on a region of degree sequences. Two applications of this general result will be presented. One is an almost uniform sampler for power-law degree sequences with exponent γ>1+3\gamma>1+\sqrt{3}. The other one shows that the switch Markov chain on the degree sequence of an Erd\H{o}s-R\'enyi random graph G(n,p)G(n,p) is asymptotically almost surely rapidly mixing if pp is bounded away from 0 and 1 by at least 5lognn1\frac{5\log n}{n-1}.Comment: Clarification

    Explicit tight bounds on the stably recoverable information for the inverse source problem

    Get PDF
    For the inverse source problem with the two-dimensional Helmholtz equation, the singular values of the 'source-to-near field' forward operator reveal a sharp frequency cut-off in the stably recoverable information on the source. We prove and numerically validate an explicit, tight lower bound for the spectral location of this cut-off. We also conjecture and support numerically a tight upper bound for the cut-off. The bounds are expressed in terms of zeros of Bessel functions of the first and second kind
    corecore