4,098 research outputs found

    Theory of Robot Communication: II. Befriending a Robot over Time

    Full text link
    In building on theories of Computer-Mediated Communication (CMC), Human-Robot Interaction, and Media Psychology (i.e. Theory of Affective Bonding), the current paper proposes an explanation of how over time, people experience the mediated or simulated aspects of the interaction with a social robot. In two simultaneously running loops, a more reflective process is balanced with a more affective process. If human interference is detected behind the machine, Robot-Mediated Communication commences, which basically follows CMC assumptions; if human interference remains undetected, Human-Robot Communication comes into play, holding the robot for an autonomous social actor. The more emotionally aroused a robot user is, the more likely they develop an affective relationship with what actually is a machine. The main contribution of this paper is an integration of Computer-Mediated Communication, Human-Robot Communication, and Media Psychology, outlining a full-blown theory of robot communication connected to friendship formation, accounting for communicative features, modes of processing, as well as psychophysiology.Comment: Hoorn, J. F. (2018). Theory of robot communication: II. Befriending a robot over time. arXiv:cs, 2502572(v1), 1-2

    On inferring intentions in shared tasks for industrial collaborative robots

    Get PDF
    Inferring human operators' actions in shared collaborative tasks, plays a crucial role in enhancing the cognitive capabilities of industrial robots. In all these incipient collaborative robotic applications, humans and robots not only should share space but also forces and the execution of a task. In this article, we present a robotic system which is able to identify different human's intentions and to adapt its behavior consequently, only by means of force data. In order to accomplish this aim, three major contributions are presented: (a) force-based operator's intent recognition, (b) force-based dataset of physical human-robot interaction and (c) validation of the whole system in a scenario inspired by a realistic industrial application. This work is an important step towards a more natural and user-friendly manner of physical human-robot interaction in scenarios where humans and robots collaborate in the accomplishment of a task.Peer ReviewedPostprint (published version

    Applications of Affective Computing in Human-Robot Interaction: state-of-art and challenges for manufacturing

    Get PDF
    The introduction of collaborative robots aims to make production more flexible, promoting a greater interaction between humans and robots also from physical point of view. However, working closely with a robot may lead to the creation of stressful situations for the operator, which can negatively affect task performance. In Human-Robot Interaction (HRI), robots are expected to be socially intelligent, i.e., capable of understanding and reacting accordingly to human social and affective clues. This ability can be exploited implementing affective computing, which concerns the development of systems able to recognize, interpret, process, and simulate human affects. Social intelligence is essential for robots to establish a natural interaction with people in several contexts, including the manufacturing sector with the emergence of Industry 5.0. In order to take full advantage of the human-robot collaboration, the robotic system should be able to perceive the psycho-emotional and mental state of the operator through different sensing modalities (e.g., facial expressions, body language, voice, or physiological signals) and to adapt its behaviour accordingly. The development of socially intelligent collaborative robots in the manufacturing sector can lead to a symbiotic human-robot collaboration, arising several research challenges that still need to be addressed. The goals of this paper are the following: (i) providing an overview of affective computing implementation in HRI; (ii) analyzing the state-of-art on this topic in different application contexts (e.g., healthcare, service applications, and manufacturing); (iii) highlighting research challenges for the manufacturing sector

    Mitigating User Frustration through Adaptive Feedback based on Human-Automation Etiquette Strategies

    Get PDF
    The objective of this study is to investigate the effects of feedback and user frustration in human-computer interaction (HCI) and examine how to mitigate user frustration through feedback based on human-automation etiquette strategies. User frustration in HCI indicates a negative feeling that occurs when efforts to achieve a goal are impeded. User frustration impacts not only the communication with the computer itself, but also productivity, learning, and cognitive workload. Affect-aware systems have been studied to recognize user emotions and respond in different ways. Affect-aware systems need to be adaptive systems that change their behavior depending on users’ emotions. Adaptive systems have four categories of adaptations. Previous research has focused on primarily function allocation and to a lesser extent information content and task scheduling. However, the fourth approach, changing the interaction styles is the least explored because of the interplay of human factors considerations. Three interlinked studies were conducted to investigate the consequences of user frustration and explore mitigation techniques. Study 1 showed that delayed feedback from the system led to higher user frustration, anger, cognitive workload, and physiological arousal. In addition, delayed feedback decreased task performance and system usability in a human-robot interaction (HRI) context. Study 2 evaluated a possible approach of mitigating user frustration by applying human-human etiquette strategies in a tutoring context. The results of Study 2 showed that changing etiquette strategies led to changes in performance, motivation, confidence, and satisfaction. The most effective etiquette strategies changed when users were frustrated. Based on these results, an adaptive tutoring system prototype was developed and evaluated in Study 3. By utilizing a rule set derived from Study 2, the tutor was able to use different automation etiquette strategies to target and improve motivation, confidence, satisfaction, and performance using different strategies, under different levels of user frustration. This work establishes that changing the interaction style alone of a computer tutor can affect a user’s motivation, confidence, satisfaction, and performance. Furthermore, the beneficial effect of changing etiquette strategies is greater when users are frustrated. This work provides a basis for future work to develop affect-aware adaptive systems to mitigate user frustration

    Towards long-term social child-robot interaction: using multi-activity switching to engage young users

    Get PDF
    Social robots have the potential to provide support in a number of practical domains, such as learning and behaviour change. This potential is particularly relevant for children, who have proven receptive to interactions with social robots. To reach learning and therapeutic goals, a number of issues need to be investigated, notably the design of an effective child-robot interaction (cHRI) to ensure the child remains engaged in the relationship and that educational goals are met. Typically, current cHRI research experiments focus on a single type of interaction activity (e.g. a game). However, these can suffer from a lack of adaptation to the child, or from an increasingly repetitive nature of the activity and interaction. In this paper, we motivate and propose a practicable solution to this issue: an adaptive robot able to switch between multiple activities within single interactions. We describe a system that embodies this idea, and present a case study in which diabetic children collaboratively learn with the robot about various aspects of managing their condition. We demonstrate the ability of our system to induce a varied interaction and show the potential of this approach both as an educational tool and as a research method for long-term cHRI

    Human-Robot Collaborations in Industrial Automation

    Get PDF
    Technology is changing the manufacturing world. For example, sensors are being used to track inventories from the manufacturing floor up to a retail shelf or a customer’s door. These types of interconnected systems have been called the fourth industrial revolution, also known as Industry 4.0, and are projected to lower manufacturing costs. As industry moves toward these integrated technologies and lower costs, engineers will need to connect these systems via the Internet of Things (IoT). These engineers will also need to design how these connected systems interact with humans. The focus of this Special Issue is the smart sensors used in these human–robot collaborations
    • …
    corecore