19,903 research outputs found

    Integration of a failure monitoring within a hybrid dynamic simulation environment

    Get PDF
    The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Model checking medium access control for sensor networks

    Get PDF
    We describe verification of S-MAC, a medium access control protocol designed for wireless sensor networks, by means of the PRISM model checker. The S-MAC protocol is built on top of the IEEE 802.11 standard for wireless ad hoc networks and, as such, it uses the same randomised backoff procedure as a means to avoid collision. In order to minimise energy consumption, in S-MAC, nodes are periodically put into a sleep state. Synchronisation of the sleeping schedules is necessary for the nodes to be able to communicate. Intuitively, energy saving obtained through a periodic sleep mechanism will be at the expense of performance. In previous work on S-MAC verification, a combination of analytical techniques and simulation has been used to confirm the correctness of this intuition for a simplified (abstract) version of the protocol in which the initial schedules coordination phase is assumed correct. We show how we have used the PRISM model checker to verify the behaviour of S-MAC and compare it to that of IEEE 802.11

    Thermal performance of a naturally ventilated building using a combined algorithm of probabilistic occupant behaviour and deterministic heat and mass balance models

    Get PDF
    This study explores the role of occupant behaviour in relation to natural ventilation and its effects on summer thermal performance of naturally ventillated buildings. We develop a behavioural algorithm (the Yun algorithm) representing probablistic occupant behaviour and implement this within a dynamic energy simulation tool. A core of this algorithm is the use of Markov chain and Monte Carlo methods in order to integrate probablistic window use models into dynamic energy simulation procedures. The comparison between predicted and monitored window use patterns shows good agreement. Performance of the Yn algorithm is demonstrated for active, medium and passive window users and a range of office constructions. Results indicate, for example, that in some cases, the temperature of an office occupied by the active window user in summer is up to 2.6ºC lower than that for the passive window user. A comparison is made with results from an alernative bahavioural algorithm developed by Humphreys [H.B. Rijal, P. Tuohy, M.A. Humphreys, J.F. Nicol, A. Samual, J. Clarke, Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings, Energy and Buildings 39(7)(2007) 823-836.]. In general, the two algorithms lead to similar predictions, but the results suggest that the Yun algorithm better reflects the observed time of day effects on window use (i.e. the increased probability of action on arrival)

    Modelling and Verification of Multiple UAV Mission Using SMV

    Full text link
    Model checking has been used to verify the correctness of digital circuits, security protocols, communication protocols, as they can be modelled by means of finite state transition model. However, modelling the behaviour of hybrid systems like UAVs in a Kripke model is challenging. This work is aimed at capturing the behaviour of an UAV performing cooperative search mission into a Kripke model, so as to verify it against the temporal properties expressed in Computation Tree Logic (CTL). SMV model checker is used for the purpose of model checking

    Close range mini Uavs photogrammetry for architecture survey

    Get PDF
    The survey of historical façades contains several bottlenecks, mainly related to the geometrical structure, the decorative framework, the presence of natural or artificial obstacles, the environment limitations. Urban context presents additional restrictions, binding by ground acquisition activity and leading to building data loss. The integration of TLS and close-range photogrammetry allows to go over such stuff, not overcoming the shadows effect due to the ground point of view. In the last year the massive use of UAVs in survey activity has permitted to enlarge survey capabilities, reaching a deeper knowledge in the architecture analysis. In the meanwhile, several behaviour rules have been introduced in different countries, regulating the UAVs use in different field, strongly restricting their application in urban areas. Recently very small and light platforms have been presented, which can partially overcome these rules restrictions, opening to very interesting future scenarios. This article presents the application of one of these very small RPAS (less than 300 g), equipped with a low-cost camera, in a close range photogrammetric survey of an historical building façade in Bologna (Italy). The suggested analysis tries to point out the system accuracy and details acquisition capacity. The final aim of the paper is to validate the application of this new platform in an architectonic survey pipeline, widening the future application of close-range photogrammetry in the architecture acquisition process

    Grid simulation services for the medical community

    No full text
    The first part of this paper presents a selection of medical simulation applications, including image reconstruction, near real-time registration for neuro-surgery, enhanced dose distribution calculation for radio-therapy, inhaled drug delivery prediction, plastic surgery planning and cardio-vascular system simulation. The latter two topics are discussed in some detail. In the second part, we show how such services can be made available to the clinical practitioner using Grid technology. We discuss the developments and experience made during the EU project GEMSS, which provides reliable, efficient, secure and lawful medical Grid services
    corecore