22,904 research outputs found

    Algorithm of arithmetical operations with fuzzy numerical data

    Get PDF
    In this article the theoretical generalization for representation of arithmetic operations with fuzzy numbers is considered. Fuzzy numbers are generalized by means of fuzzy measures. On the basis of this generalization the new algorithm of fuzzy arithmetic which uses a principle of entropy maximum is created. As example, the summation of two fuzzy numbers is considered. The algorithm is realized in the software "Fuzzy for Microsoft Excel".fuzzy measure (Sugeno), fuzzy integral (Sugeno), fuzzy numbers; arithmetical operations; principle of entropy maximum

    A fuzzy multiobjective algorithm for multiproduct batch plant: Application to protein production

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands and proposes an alternative treatment of the imprecision by using fuzzy concepts. For this purpose, we extended a multiobjective genetic algorithm (MOGA) developed in previousworks, taking into account simultaneously maximization of the net present value (NPV) and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The former is computed by comparing the fuzzy computed production time to a given fuzzy production time horizon and the latter is based on the additional fuzzy demand that the plant is able to produce. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage

    Neutrality and Many-Valued Logics

    Get PDF
    In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.Comment: 119 page

    Performance Evaluation of Road Traffic Control Using a Fuzzy Cellular Model

    Full text link
    In this paper a method is proposed for performance evaluation of road traffic control systems. The method is designed to be implemented in an on-line simulation environment, which enables optimisation of adaptive traffic control strategies. Performance measures are computed using a fuzzy cellular traffic model, formulated as a hybrid system combining cellular automata and fuzzy calculus. Experimental results show that the introduced method allows the performance to be evaluated using imprecise traffic measurements. Moreover, the fuzzy definitions of performance measures are convenient for uncertainty determination in traffic control decisions.Comment: The final publication is available at http://www.springerlink.co

    General fuzzy min-max neural network for clustering and classification

    Get PDF
    This paper describes a general fuzzy min-max (GFMM) neural network which is a generalization and extension of the fuzzy min-max clustering and classification algorithms of Simpson (1992, 1993). The GFMM method combines supervised and unsupervised learning in a single training algorithm. The fusion of clustering and classification resulted in an algorithm that can be used as pure clustering, pure classification, or hybrid clustering classification. It exhibits a property of finding decision boundaries between classes while clustering patterns that cannot be said to belong to any of existing classes. Similarly to the original algorithms, the hyperbox fuzzy sets are used as a representation of clusters and classes. Learning is usually completed in a few passes and consists of placing and adjusting the hyperboxes in the pattern space; this is an expansion-contraction process. The classification results can be crisp or fuzzy. New data can be included without the need for retraining. While retaining all the interesting features of the original algorithms, a number of modifications to their definition have been made in order to accommodate fuzzy input patterns in the form of lower and upper bounds, combine the supervised and unsupervised learning, and improve the effectiveness of operations. A detailed account of the GFMM neural network, its comparison with the Simpson's fuzzy min-max neural networks, a set of examples, and an application to the leakage detection and identification in water distribution systems are given
    • 

    corecore