11 research outputs found

    Interconnection networks for parallel and distributed computing

    Get PDF
    Parallel computers are generally either shared-memory machines or distributed- memory machines. There are currently technological limitations on shared-memory architectures and so parallel computers utilizing a large number of processors tend tube distributed-memory machines. We are concerned solely with distributed-memory multiprocessors. In such machines, the dominant factor inhibiting faster global computations is inter-processor communication. Communication is dependent upon the topology of the interconnection network, the routing mechanism, the flow control policy, and the method of switching. We are concerned with issues relating to the topology of the interconnection network. The choice of how we connect processors in a distributed-memory multiprocessor is a fundamental design decision. There are numerous, often conflicting, considerations to bear in mind. However, there does not exist an interconnection network that is optimal on all counts and trade-offs have to be made. A multitude of interconnection networks have been proposed with each of these networks having some good (topological) properties and some not so good. Existing noteworthy networks include trees, fat-trees, meshes, cube-connected cycles, butterflies, Möbius cubes, hypercubes, augmented cubes, k-ary n-cubes, twisted cubes, n-star graphs, (n, k)-star graphs, alternating group graphs, de Bruijn networks, and bubble-sort graphs, to name but a few. We will mainly focus on k-ary n-cubes and (n, k)-star graphs in this thesis. Meanwhile, we propose a new interconnection network called augmented k-ary n- cubes. The following results are given in the thesis.1. Let k ≥ 4 be even and let n ≥ 2. Consider a faulty k-ary n-cube Q(^k_n) in which the number of node faults f(_n) and the number of link faults f(_e) are such that f(_n) + f(_e) ≤ 2n - 2. We prove that given any two healthy nodes s and e of Q(^k_n), there is a path from s to e of length at least k(^n) - 2f(_n) - 1 (resp. k(^n) - 2f(_n) - 2) if the nodes s and e have different (resp. the same) parities (the parity of a node Q(^k_n) in is the sum modulo 2 of the elements in the n-tuple over 0, 1, ∙∙∙ , k - 1 representing the node). Our result is optimal in the sense that there are pairs of nodes and fault configurations for which these bounds cannot be improved, and it answers questions recently posed by Yang, Tan and Hsu, and by Fu. Furthermore, we extend known results, obtained by Kim and Park, for the case when n = 2.2. We give precise solutions to problems posed by Wang, An, Pan, Wang and Qu and by Hsieh, Lin and Huang. In particular, we show that Q(^k_n) is bi-panconnected and edge-bipancyclic, when k ≥ 3 and n ≥ 2, and we also show that when k is odd, Q(^k_n) is m-panconnected, for m = (^n(k - 1) + 2k - 6’ / ‘_2), and (k -1) pancyclic (these bounds are optimal). We introduce a path-shortening technique, called progressive shortening, and strengthen existing results, showing that when paths are formed using progressive shortening then these paths can be efficiently constructed and used to solve a problem relating to the distributed simulation of linear arrays and cycles in a parallel machine whose interconnection network is Q(^k_n) even in the presence of a faulty processor.3. We define an interconnection network AQ(^k_n) which we call the augmented k-ary n-cube by extending a k-ary n-cube in a manner analogous to the existing extension of an n-dimensional hypercube to an n-dimensional augmented cube. We prove that the augmented k-ary n-cube Q(^k_n) has a number of attractive properties (in the context of parallel computing). For example, we show that the augmented k-ary n-cube Q(^k_n) - is a Cayley graph (and so is vertex-symmetric); has connectivity 4n - 2, and is such that we can build a set of 4n - 2 mutually disjoint paths joining any two distinct vertices so that the path of maximal length has length at most max{{n- l)k- (n-2), k + 7}; has diameter [(^k) / (_3)] + [(^k - 1) /( _3)], when n = 2; and has diameter at most (^k) / (_4) (n+ 1), for n ≥ 3 and k even, and at most [(^k)/ (_4) (n + 1) + (^n) / (_4), for n ^, for n ≥ 3 and k odd.4. We present an algorithm which given a source node and a set of n - 1 target nodes in the (n, k)-star graph S(_n,k) where all nodes are distinct, builds a collection of n - 1 node-disjoint paths, one from each target node to the source. The collection of paths output from the algorithm is such that each path has length at most 6k - 7, and the algorithm has time complexity O(k(^3)n(^4))

    Second Annual Conference on Astronomical Data Analysis Software and Systems. Abstracts

    Get PDF
    Abstracts from the conference are presented. The topics covered include the following: next generation software systems and languages; databases, catalogs, and archives; user interfaces/visualization; real-time data acquisition/scheduling; and IRAF/STSDAS/PROS status reports

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    Path Integrals in the Sky: Classical and Quantum Problems with Minimal Assumptions

    Get PDF
    Cosmology has, after the formulation of general relativity, been transformed from a branch of philosophy into an active field in physics. Notwithstanding the significant improvements in our understanding of our Universe, there are still many open questions on both its early and late time evolution. In this thesis, we investigate a range of problems in classical and quantum cosmology, using advanced mathematical tools, and making only minimal assumptions. In particular, we apply Picard-Lefschetz theory, catastrophe theory, infinite dimensional measure theory, and weak-value theory. To study the beginning of the Universe in quantum cosmology, we apply Picard-Lefschetz theory to the Lorentzian path integral for gravity. We analyze both the Hartle-Hawking no-boundary proposal and Vilenkin's tunneling proposal, and demonstrate that the Lorentzian path integral corresponding to the mini-superspace formulation of the two proposals is well-defined. However, when including fluctuations, we show that the path integral predicts the existence of large fluctuations. This indicates that the Universe cannot have had a smooth beginning in Euclidean de Sitter space. In response to these conclusions, the scientific community has made a series of adapted formulations of the no-boundary and tunneling proposals. We show that these new proposals suffer from similar issues. Second, we generalize the weak-value interpretation of quantum mechanics to relativistic systems. We apply this formalism to a relativistic quantum particle in a constant electric field. We analyze the evolution of the relativistic particle in both the classical and the quantum regime and evaluate the back-reaction of the Schwinger effect on the electric field in 1+11+1-dimensional spacetime, using analytical methods. In addition, we develop a numerical method to evaluate both the wavefunction and the corresponding weak-values in more general electric and magnetic fields. We conclude the quantum part of this thesis with a chapter on Lorentzian path integrals. We propose a new definition of the real-time path integral in terms of Brownian motion on the Lefschetz thimble of the theory. We prove the existence of a σ\sigma-measure for the path integral of the non-relativistic free particle, the (inverted) harmonic oscillator, and the relativistic particle in a range of potentials. We also describe how this proposal extends to more general path integrals. In the classical part of this thesis, we analyze two problems in late-time cosmology. Multi-dimensional oscillatory integrals are prevalent in physics, but notoriously difficult to evaluate. We develop a new numerical method, based on multi-dimensional Picard-Lefschetz theory, for the evaluation of these integrals. The virtue of this method is that its efficiency increases when integrals become more oscillatory. The method is applied to interference patterns of lensed images near caustics described by catastrophe theory. This analysis can help us understand the lensing of astrophysical sources by plasma lenses, which is especially relevant in light of the proposed lensing mechanism for fast radio bursts. Finally, we analyze large-scale structure formation in terms of catastrophe theory. We show that the geometric structure of the three-dimensional cosmic-web is determined by both the eigenvalue and the eigenvector fields of the deformation tensor. We formulate caustic conditions, classifying caustics using properties of these fields. When applied to the Zel'dovich approximation of structure formation, the caustic conditions enable us to construct a caustic skeleton of the three-dimensional cosmic-web in terms of the initial conditions

    Solutions to decision-making problems in management engineering using molecular computational algorithms and experimentations

    Get PDF
    制度:新 ; 報告番号:甲3368号 ; 学位の種類:博士(工学) ; 授与年月日:2011/5/23 ; 早大学位記番号:新568

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Spacesuit: space craft

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2003.Vita.Includes bibliographical references.by Bradley McGilvary Pitts.S.M

    OPERATIONALLY ENHANCED FOLDED HYPERCUBES

    No full text
    Recently, several variations of the hypercube have been proposed to enhance its performance and reliability. The folded hypercube is one of these variations, in which an extra link is added to each node providing a direct connection to the node located farthest from it. In this short note, we propose a new operation mode of folded hypercube to enhance its performance and fault-tolerance. There are (n+1k) regular k-cubes within a folded hypercube of dimension n, denoted by FQ(n). We introduce another type of hypercube, called the twisted hypercube, to improve the performance and fault tolerance of the folded hypercube. The problems of finding a subcube of given size in an FQ(n) and routing messages within the subcube are addressed for the proposed operation mode. The advantages of the proposed operation mode over the regular-hypercube operation mode are analyzed in terms of dependability and robustness. The proposed operation mode is shown to make significant improvements over the regular-hypercube operation mode in both dependability and robustness. Because the new operation mode can be applied to only an (n - 1)-subcube level for a given FQ(n), we present a general form of folded hypercube, thus enhancing the availability of subcubes of any dimension m < n.X112sciescopu
    corecore