46,555 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    What is a quantum computer, and how do we build one?

    Full text link
    The DiVincenzo criteria for implementing a quantum computer have been seminal in focussing both experimental and theoretical research in quantum information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. The question is therefore what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that according to this definition a device is a quantum computer if it obeys the following four criteria: Any quantum computer must (1) have a quantum memory; (2) facilitate a controlled quantum evolution of the quantum memory; (3) include a method for cooling the quantum memory; and (4) provide a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault-tolerantly. We discuss various existing quantum computing paradigms, and how they fit within this framework. Finally, we lay out a roadmap for selecting an avenue towards building a quantum computer. This is summarized in a decision tree intended to help experimentalists determine the most natural paradigm given a particular physical implementation

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    A Taxonomy of Self-configuring Service Discovery Systems

    Get PDF
    We analyze the fundamental concepts and issues in service discovery. This analysis places service discovery in the context of distributed systems by describing service discovery as a third generation naming system. We also describe the essential architectures and the functionalities in service discovery. We then proceed to show how service discovery fits into a system, by characterizing operational aspects. Subsequently, we describe how existing state of the art performs service discovery, in relation to the operational aspects and functionalities, and identify areas for improvement

    NFV Orchestrator Placement for Geo-Distributed Systems

    Full text link
    The European Telecommunications Standards Institute (ETSI) developed Network Functions Virtualization (NFV) Management and Orchestration (MANO) framework. Within that framework, NFV orchestrator (NFVO) and Virtualized Network Function (VNF) Manager (VNFM) functional blocks are responsible for managing the lifecycle of network services and their associated VNFs. However, they face significant scalability and performance challenges in large-scale and geo-distributed NFV systems. Their number and location have major implications for the number of VNFs that can be accommodated and also for the overall system performance. NFVO and VNFM placement is therefore a key challenge due to its potential impact on the system scalability and performance. In this paper, we address the placement of NFVO and VNFM in large-scale and geo-distributed NFV infrastructure. We provide an integer linear programming formulation of the problem and propose a two-step placement algorithm to solve it. We also conduct a set of experiments to evaluate the proposed algorithm.Comment: This paper has been accepted for presentation in 16th IEEE International Symposium on Network Computing and Applications (IEEE NCA 2017

    Overlay networks for smart grids

    Get PDF

    The Signal Data Explorer: A high performance Grid based signal search tool for use in distributed diagnostic applications

    Get PDF
    We describe a high performance Grid based signal search tool for distributed diagnostic applications developed in conjunction with Rolls-Royce plc for civil aero engine condition monitoring applications. With the introduction of advanced monitoring technology into engineering systems, healthcare, etc., the associated diagnostic processes are increasingly required to handle and consider vast amounts of data. An exemplar of such a diagnosis process was developed during the DAME project, which built a proof of concept demonstrator to assist in the enhanced diagnosis and prognosis of aero-engine conditions. In particular it has shown the utility of an interactive viewing and high performance distributed search tool (the Signal Data Explorer) in the aero-engine diagnostic process. The viewing and search techniques are equally applicable to other domains. The Signal Data Explorer and search services have been demonstrated on the Worldwide Universities Network to search distributed databases of electrocardiograph data
    • ā€¦
    corecore