1,560 research outputs found

    Poseidon: A marine environmental monitoring, forecasting and information system for the Greek seas

    Get PDF
    The scope of this work is twofold: i) to discuss and analyze some principles, issues and problems related to the development and advancement of Operational Oceanography in Greece and ii) to present a real-time monitoring and forecasting system for the Aegean Sea, which is currently under implementation. Operational Oceanography in Greece has become a necessity today, since it can provide aid to find solutions on problems related to societal, economic, environmental and scientific issues. Most of the Greek coastal regions are under pressure, susceptible to damages due to the increasing tendency of the population to move from the inland to the coast, marine environmental pollution, competitive development of the coastal market sector, etc. Moreover, the complex geomorphology of the coastal areas and the interdependence between natural processes and human activities causes significant alterations in this delicate environment. A rational treatment of these problems can be based on integrated coastal zone management (ICZM). An absolutely necessary means for establishing ICZM is the operation of marine moni- toring systems. Such a system ("POSEIDON system") is under implementation by the National Centre for Marine Research. POSEIDON is a comprehensive marine monitoring and forecasting system, that aims to improve environmental surveillance and facilitate sea transport, rescue and safety of life at sea, fishing and aquaculture, protection of the marine ecosystem, etc. POSEIDON is expected to enhance considerably the capabilities to manage, protect and develop the marine resources of the Greek Seas and to promote Greek Operational Oceanography

    An ECOOP web portal for visualising and comparing distributed coastal oceanography model and in situ data

    Get PDF
    As part of a large European coastal operational oceanography project (ECOOP), we have developed a web portal for the display and comparison of model and in situ marine data. The distributed model and in situ datasets are accessed via an Open Geospatial Consortium Web Map Service (WMS) and Web Feature Service (WFS) respectively. These services were developed independently and readily integrated for the purposes of the ECOOP project, illustrating the ease of interoperability resulting from adherence to international standards. The key feature of the portal is the ability to display co-plotted timeseries of the in situ and model data and the quantification of misfits between the two. By using standards-based web technology we allow the user to quickly and easily explore over twenty model data feeds and compare these with dozens of in situ data feeds without being concerned with the low level details of differing file formats or the physical location of the data. Scientific and operational benefits to this work include model validation, quality control of observations, data assimilation and decision support in near real time. In these areas it is essential to be able to bring different data streams together from often disparate locations

    Mediterranean ocean Forecasting System: Toward Environmental Predictions-MFSTEP Executive Summary

    Get PDF
    Objectives: The Project aims at the further development of an operational forecasting system for the Mediterranean Sea based upon three main components: a) a Real Time-RT Observing system; b) a numerical forecasting system at the basin scale and for the sub-regional/shelf areas; c) the forecast products dissemination/exploitation system. The Observing system component consists of: • a SOOP-VOS system with RT data dissemination and test of new sensors that collect multidisciplinary data; • a moored buoy network (M3A) designed to serve the RT validation of the basin scale models and the calibration of the ecosystem models; • a satellite RT data analysis system using several satellites for sea surface elevation, sea surface temperature and sea surface winds; • a high space-time resolution network of autonomous subsurface profiling floats (Array for Real-Time Geostrophic Oceanography-ARGO); • a basin scale glider autonomous vehicle experiment; The sampling strategy is continuously assessed by the Observing System Simulation Experiment (OSSE) activities and a RT data management and delayed mode archiving system has been organized

    Oil Spill Dispersion Forecasting Models

    Get PDF
    Oil spill models are used worldwide to simulate the evolution of an oil slick that occurs after an accidental ship collision or during oil extraction or other oil tanker activities. The simulation of the transport and fate of an oil slick in the sea, by evaluating the physicochemical processes that take place between oil phase and the water column, is the base for the recognition and assessment of its environmental effects. Numerous oil spill dispersion models exist in the bibliography. The contribution of this chapter is the introduction of a 3D oil slick simulation model developed by the Aristotle University of Thessaloniki, which has been recurrently used in different updated forms and applied in operational mode, since 1991 when it was originally created. The model has been tested in various hypothetical scenarios in North Aegean Sea, Greece, and responded with great success. Findings of the present study highlight the existing experience on the subject and denote the applicability of such models in either tracing the source of a spill or in predicting its path and spread, thus proving their value in real-time crisis management

    Mediterranean ocean Forecasting System: Toward Environmental Predictions-MFSTEP Executive Summary

    Get PDF
    Objectives: The Project aims at the further development of an operational forecasting system for the Mediterranean Sea based upon three main components: a) a Real Time-RT Observing system; b) a numerical forecasting system at the basin scale and for the sub-regional/shelf areas; c) the forecast products dissemination/exploitation system. The Observing system component consists of: • a SOOP-VOS system with RT data dissemination and test of new sensors that collect multidisciplinary data; • a moored buoy network (M3A) designed to serve the RT validation of the basin scale models and the calibration of the ecosystem models; • a satellite RT data analysis system using several satellites for sea surface elevation, sea surface temperature and sea surface winds; • a high space-time resolution network of autonomous subsurface profiling floats (Array for Real-Time Geostrophic Oceanography-ARGO); • a basin scale glider autonomous vehicle experiment; The sampling strategy is continuously assessed by the Observing System Simulation Experiment (OSSE) activities and a RT data management and delayed mode archiving system has been organized

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    A three-step model to assess shoreline and offshore susceptibility to oil spills: the South Aegean (Crete) as an analogue for confined marine basins

    Get PDF
    This study combines bathymetric, geomorphological, geological data and oil spill predictions to model the impact of oil spills in two accident scenarios from offshore Crete, Eastern Mediterranean. The aim is to present a new three-step method of use by emergency teams and local authorities in the assessment of shoreline and offshore susceptibility to oil spills. The three-step method comprises: (1) real-time analyses of bathymetric, geomorphological, geological and oceanographic data; (2) oil dispersion simulations under known wind and sea current conditions; and (3) the compilation of final hazard maps based on information from (1) and (2) and on shoreline susceptibility data. The results in this paper show that zones of high to very-high susceptibility around the island of Crete are related to: (a) offshore bathymetric features, including the presence of offshore scarps and seamounts; (b) shoreline geology, and (c) the presence near the shore of sedimentary basins filled with unconsolidated deposits of high permeability. Oil spills, under particular weather and oceanographic conditions, may quickly spread and reach the shoreline 5–96 h after the initial accident. As a corollary of this work, we present the South Aegean region around Crete as a valid case-study for confined marine basins, narrow seaways, or interior seas around island groups

    Preface "Operational oceanography in the Mediterranean Sea: the second stage of development"

    Get PDF
    The papers of this special issue overview some of the scientific results of the second phase of development of the Mediterranean Forecasting System (MFS) realised during the EU project "Mediterranean ocean Forecasting System: Toward Environmental Predictions-MFSTEP" that started 1 March 2003 and ended in June 2006. The MFS oceanographic service that is now operational in the Mediterranean Sea was developed, implemented and quality assessed during MFSTEP. MFS is composed of: a) a near real time observing system with satellite and in situ elements; b) a numerical ocean forecasting system at basin scale, assimilating all data available in real time, and a set of limited area forecasting models in different sub-regional and shelf areas; c) biochemical models for algal biomass forecasting; d) a product dissemination system. Moreover, the products of MFS are used to develop downstream services, such as oil spill drift and dispersion, sediment transport in the coastal areas and fish stock assessment that demonstrate the value of the operational service for end-users. MFSTEP contained several phases of development and realised a demonstration exercise, the so-called Targeted Operational Period-TOP that started in September 2004 and ended in March 2005. During TOP all possible observing platforms were active, the numerical models were capable to assimilate the observations and the all models were running in forecast mode, from the basin scale to the shelf areas. The deployed observing and modelling components of MFS are now part of a sustained operational oceanographic service for the Mediterranean Sea, so-called Mediterranean Operational Oceanography Network (MOON, http: //www.moon-oceanforecasting.eu)

    Towards Improved Forecasts of Atmospheric and Oceanic Circulations over the Complex Terrain of the Eastern Mediterranean

    Get PDF
    Forecasting atmospheric and oceanic circulations accurately over the Eastern Mediterranean has proved to be an exceptional challenge. The existence of fine-scale topographic variability (land/sea coverage) and seasonal dynamics variations can create strong spatial gradients in temperature, wind and other state variables, which numerical models may have difficulty capturing. The Hellenic Center for Marine Research (HCMR) is one of the main operational centers for wave forecasting in the eastern Mediterranean. Currently, HCMR's operational numerical weather/ocean prediction model is based on the coupled Eta/Princeton Ocean Model (POM). Since 1999, HCMR has also operated the POSEIDON floating buoys as a means of state-of-the-art, real-time observations of several oceanic and surface atmospheric variables. This study attempts a first assessment at improving both atmospheric and oceanic prediction by initializing a regional Numerical Weather Prediction (NWP) model with high-resolution sea surface temperatures (SST) from remotely sensed platforms in order to capture the small-scale characteristics
    • …
    corecore