159 research outputs found

    Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management

    Get PDF
    Global information on the spatio-temporal variation of parameters driving the Earth’s terrestrial water and energy cycles, such as evapotranspiration (ET) rates and surface soil moisture (SSM), is of key significance. The water and energy cycles underpin global food and water security and need to be fully understood as the climate changes. In the last few decades, Earth Observation (EO) technology has played an increasingly important role in determining both ET and SSM. This paper reviews the state of the art in the use specifically of operational EO of both ET and SSM estimates. We discuss the key technical and operational considerations to derive accurate estimates of those parameters from space. The review suggests significant progress has been made in the recent years in retrieving ET and SSM operationally; yet, further work is required to optimize parameter accuracy and to improve the operational capability of services developed using EO data. Emerging applications on which ET/SSM operational products may be included in the context specifically in relation to agriculture are also highlighted; the operational use of those operational products in such applications remains to be seen

    EVASPA (EVapotranspiration Assessment from SPAce) Tool: An overview

    Get PDF
    AbstractEvapotranspiration (ET) is a fundamental variable of the hydrological cycle and its estimation is required for irrigation management, water resources planning and environmental studies. Remote sensing provides spatially distributed cost-effective information for ET maps production at regional scale. We have developed EVASPA too for mapping ET from remote sensing data at spatial and temporal scales relevant to hydrological or agronomica studies.EVASPA includes several algorithms for estimating evapotranspiration and various equations for estimating the required input information (net radiation, ground heat flux, evaporative fraction…), which provides a way to assess uncertainties in the derivation of ET. The tool integrates data from various remote sensing sensors and it can be easily adapted to new sensors. To test the tool, evapotranspiration maps have been produced for the Crau-Camargue pilot site (south-eastern France), where several energy balance stations deployed in contrasted areas provide ground measurements. An overall description of the tool and first results of performance asse sment (comparison to ground data) are presented here

    Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products

    Get PDF
    This study assesses the accuracy of estimating daily grass reference evapotranspiration (PM-ETo) using daily shortwave radiation (Rs) and reference evapotranspiration (ETREF) products provided by the Meteosat Second Generation (MSG) geostationary satellite delivered by the Satellite Applications Facility on Land Surface Analysis (LSA-SAF) framework. The accuracy of using reanalysis ERA5 shortwave radiation data (Rs ERA5) provided by the European Center for Medium-Range Weather Forecasts (ECMWF) is also evaluated. The assessments were performed using observed weather variables at 37 weather stations distributed across continental Portugal, where climate conditions range from semi-arid to humid, and 12 weather stations located in Azores islands, characterized by humid, windy and often cloudy conditions. This study’s use of data from a variety of climate conditions contributed to a unique and innovative assessment of the usability of LSA-SAF and ERA5 products for ETo estimation. The first assessment focused on comparing LSA-SAF estimates of Rs (Rs LSA-SAF) against ground stations (Rs ground). The results showed a good matching between the two Rs data sets for continental Portugal but a tendency for Rs LSA-SAF to under-estimate Rs ground in the cloudy islands of Azores. ETo values computed using Rs LSA-SAF data and observed temperature, humidity and wind speed (ETo LSA-SAF) were then compared with PMETo estimates with ground-based data, which were used as benchmark; input data of temperature and humidity needed for PM-ETo were quality checked for surface aridity effects. It was observed that ETo LSA-SAF is strongly correlated with PM-ETo (R2 > 0.97) for most locations in continental Portugal, with regression coefficient of a linear regression forced to the origin ranging between 0.95 and 1.05, mean root mean square error (RMSE) of 0.13 mm d 1, and Nash and Sutcliff efficiency of modeling (EF) above 0.95. For most Azores locations, ETo LSA-SAF over-estimated PM-ETo. This is likely a consequence of the high spatio-temporal heterogeneity of weather conditions that occur in these oceanic islands together with the different footprints of satellite (averaged over the pixel) and station observations. Reanalysis ERA5 shortwave radiation data presented similar behavior to the LSA-SAF products, however with slightly lower accuracy. The daily LSA-SAF ETREF product (ETREF LSA-SAF) was assessed and results have shown a good accuracy of this product, with acceptable RMSE and high EF values, for continental Portugal but a low accuracy for the Azores islands. A simplified bias correction approach was shown to improve both ETo derived from the LSA-SAF products, namely for Azores stations, which seem to be representative of smaller areas. The use of the FAO-PM temperature approach (PMT) was also assessed using the Rs LSA-SAF and Rs ERA5 data, which showed a superiority of the LSA-SAF product for ETo estimations (ETo PMT LSA-SAF). No significant differences (p < 0.05) were observed in terms of the median value of the RMSE when adopting ETo PMT and ETREF LSA-SAF. Differently, results showed that using the Rs LSA-SAF in the PMT approach (ETo PMT LSA-SAF) produces significantly better RMSE results than ETo PMT and ETREF LSA-SAF. Overall, the performed assessment allows concluding that the use of Rs LSA-SAF, and to a lesser extent the use of the Rs ERA5, highly improves the accuracy of computation of ETo when Rs observations are not available, including when only temperature data are accessible. The use of the ETREF LSA-SAF product is a good alternative when observed weather data are not availableinfo:eu-repo/semantics/publishedVersio

    The application of the surface energy balance system model to estimate evapotranspiration in South Africa

    Get PDF
    Includes abstract.Includes bibliographical references.In a water scarce country like South Africa with a number of large consumers of water, it is important to estimate evapotranspiration (ET) with a high degree of accuracy. This is especially important in the semi-arid regions where there is an increasing demand for water and a scarce supply thereof. ET varies regionally and seasonally, so knowledge about ET is fundamental to save and secure water for different uses, and to guarantee that water is distributed to water consumers in a sustainable manner. Models to estimate ET have been developed using a combination of meteorological and remote sensing data inputs. In this study, the pre-packaged Surface Energy Balance System (SEBS) model was used for the first time in the South African environment alongside MODerate Resolution Imaging Spectroradiometer (MODIS) satellite data and validated with eddy covariance data measured in a large apple orchard (11 ha), in the Piketberg area of the Western Cape. Due to the relative infancy of research in this field in South Africa, SEBS is an attractive model choice as it is available as open-source freeware. The model was found to underestimate the sensible heat flux through setting it at the wet limit. Daily ET measured by the eddy covariance system represented 55 to 96% of the SEBS estimate, an overestimation of daily ET. The consistent underestimation of the sensible heat flux was ascribed to sensitivities to the land surface air temperature gradient, the choice of fractional vegetation cover formula as well as the height of the vegetation canopy (3.2 m) relative to weather station reference height (2 m). The methodology was adapted based on the above findings and was applied to a second study area (quaternary catchment P10A, near Grahamstown, Eastern Cape) where two different approaches for deriving surface roughness are applied. It was again demonstrated that the sensible heat flux is sensitive to surface roughness in combination with land surface air temperature gradient and again, the overestimation of daily ET persisted (actual ET being greater than reference ET). It was concluded that in complex environments, at coarse resolution, it is not possible to adequately describe the remote sensing derived input parameters at the correct level of accuracy and at the spatial resolution required for the accurate estimation of the sensible heat flux

    Assessing Crop Water Requirement and Yield by Combining ERA5-Land Reanalysis Data with CM-SAF Satellite-Based Radiation Data and Sentinel-2 Satellite Imagery

    Get PDF
    The widespread development of Earth Observation (EO) systems and advances in numerical atmospheric modeling have made it possible to use the newest data sources as input for crop–water balance models, thereby improving the crop water requirements (CWR) and yield estimates from the field to the regional scale. Satellite imagery and numerical weather prediction outputs offer high resolution (in time and space) gridded data that can compensate for the paucity of crop parameter field measurements and ground weather observations, as required for assessments of CWR and yield. In this study, the AquaCrop model was used to assess CWR and yield of tomato on a farm in Southern Italy by assimilating Sentinel-2 (S2) canopy cover imagery and using CM-SAF satellite-based radiation data and ERA5-Land reanalysis as forcing weather data. The prediction accuracy was evaluated with field data collected during the irrigation season (April–July) of 2021. Satellite estimates of canopy cover differed from ground observations, with a RMSE of about 11%. CWR and yield predictions were compared with actual data regarding irrigation volumes and harvested yield. The results showed that S2 estimates of crop parameters represent added value, since their assimilation into crop growth models improved CWR and yield estimates. Reliable CWR and yield estimates can be achieved by combining the ERA5-Land and CM-SAF weather databases with S2 imagery for assimilation into the AquaCrop model

    Review of the use of remote sensing for monitoring wildfire risk conditions to support fire risk assessment in protected areas

    Get PDF
    Fire risk assessment is one of the most important components in the management of fire that offers the framework for monitoring fire risk conditions. Whilst monitoring fire risk conditions commonly revolved around field data, Remote Sensing (RS) plays key role in quantifying and monitoring fire risk indicators. This study presents a review of remote sensing data and techniques for fire risk monitoring and assessment with a particular emphasis on its implications for wildfire risk mapping in protected areas. Firstly, we concentrate on RS derived variables employed to monitor fire risk conditions for fire risk assessment. Thereafter, an evaluation of the prominent RS platforms such as Broadband, Hyperspectral and Active sensors that have been utilized for wildfire risk assessment. Furthermore, we demonstrate the effectiveness in obtaining information that has operational use or immediate potentials for operational application in protected areas (PAs). RS techniques that involve extraction of landscape information from imagery were summarised. The review concludes that in practice, fire risk assessment that consider all variables/indicators that influence fire risk is impossible to establish, however it is imperative to incorporate indicators or variables of very high heterogeneous and “multi-sensoral or multivariate fire risk index approach for fire risk assessment in PA.Keywords: Protected Areas, Fire Risk conditions; Remote Sensing, Wildfire risk assessmen

    Relationship of LST, NDBI and NDVI using Landsat-8 data in Kandaihimmat Watershed, Hoshangabad, India

    Get PDF
    25-31Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) have been computed and their relationships with Land surface temperature (LST) in each season were examined. LST retrieved by thermal data analysis represents the spatial and temporal distribution of surface temperature. NDBI is describing the built-up index and NDVI the proportion of vegetation in the watershed. Relationships of LST with NDBI & NDVI were developed in each season. Correlation results of LST & NDBI has shown strong positive relationship i.e. R2 = 0.991 in Jan.2016, 0.981 in May 2016 & 0.965 in Oct.2016, where as strong negative correlation were found in between LST & NDVI i.e. R2 = 0.993, 0.992, & 0.911 in each season. Relationship between NDVI & NDBI was also developed and is showing strong negative correlation i.e. R2 = 0.979, 0.988, & 0.913

    Performance assessment of evapotranspiration estimated from different data sources over agricultural landscape in Northern India

    Get PDF
    Accurate estimation of evapotranspiration is generally constrained due to lack of required hydro-meteorological datasets. This study addresses the performance analysis of Reference Evapotranspiration (ETo) estimated from NASA/POWER, National Center for Environmental Prediction (NCEP) global reanalysis data before and after dynamical downscaling through the Weather Research and Forecasting (WRF) model. The state of the art Hamon’s and Penman-Monteith methods were utilized for the ETo estimation in the Northern India. The performances indices such as Bias, Root Mean Square Error (RMSE) and correlation(r) were calculated, which showed the values 0.242, 0.422 and 0.959 for NCEP data (without downscaling) and 0.230, 0.402,0.969 for the downscaled data respectively. The results indicated that after WRF downscaling, there was some marginal improvement found in the ETo as compared to the without downscaling datasets. However, a better performance was found in the case of NASA/POWER datasets with Bias, RMSE and correlation values of 0.154 0.348 and 0.960 respectively. In overall, the results indicated that the NASA/POWER and WRF downscaled data can be used for ETo estimation, especially in the ungauged areas. However, NASA/POWER is recommended as the ETo calculations are less complicated than those required with NASA/POWER and WRF
    • …
    corecore