8,057 research outputs found

    Process Algebras

    Get PDF
    Process Algebras are mathematically rigorous languages with well defined semantics that permit describing and verifying properties of concurrent communicating systems. They can be seen as models of processes, regarded as agents that act and interact continuously with other similar agents and with their common environment. The agents may be real-world objects (even people), or they may be artifacts, embodied perhaps in computer hardware or software systems. Many different approaches (operational, denotational, algebraic) are taken for describing the meaning of processes. However, the operational approach is the reference one. By relying on the so called Structural Operational Semantics (SOS), labelled transition systems are built and composed by using the different operators of the many different process algebras. Behavioral equivalences are used to abstract from unwanted details and identify those systems that react similarly to external experiments

    On the Distributability of Mobile Ambients

    Get PDF
    Modern society is dependent on distributed software systems and to verify them different modelling languages such as mobile ambients were developed. To analyse the quality of mobile ambients as a good foundational model for distributed computation, we analyse the level of synchronisation between distributed components that they can express. Therefore, we rely on earlier established synchronisation patterns. It turns out that mobile ambients are not fully distributed, because they can express enough synchronisation to express a synchronisation pattern called M. However, they can express strictly less synchronisation than the standard pi-calculus. For this reason, we can show that there is no good and distributability-preserving encoding from the standard pi-calculus into mobile ambients and also no such encoding from mobile ambients into the join-calculus, i.e., the expressive power of mobile ambients is in between these languages. Finally, we discuss how these results can be used to obtain a fully distributed variant of mobile ambients.Comment: In Proceedings EXPRESS/SOS 2018, arXiv:1808.08071. Conference version of arXiv:1808.0159

    A Congruence for Petri Nets

    Get PDF
    We introduce a way of viewing Petri nets as open systems. This is done by considering a bicategory of cospans over a category of p/t nets and embeddings. We derive a labelled transition system (LTS) semantics for such nets using GIPOs and characterise the resulting congruence. Technically, our results are similar to the recent work by Milner on applying the theory of bigraphs to Petri Nets. The two main differences are that we treat p/t nets instead of c/e nets and we deal directly with a category of nets instead of encoding them into bigraphs

    Wave-Style Token Machines and Quantum Lambda Calculi

    Full text link
    Particle-style token machines are a way to interpret proofs and programs, when the latter are written following the principles of linear logic. In this paper, we show that token machines also make sense when the programs at hand are those of a simple quantum lambda-calculus with implicit qubits. This, however, requires generalising the concept of a token machine to one in which more than one particle travel around the term at the same time. The presence of multiple tokens is intimately related to entanglement and allows us to give a simple operational semantics to the calculus, coherently with the principles of quantum computation.Comment: In Proceedings LINEARITY 2014, arXiv:1502.0441

    Connector algebras for C/E and P/T nets interactions

    Get PDF
    A quite fourishing research thread in the recent literature on component based system is concerned with the algebraic properties of different classes of connectors. In a recent paper, an algebra of stateless connectors was presented that consists of five kinds of basic connectors, namely symmetry, synchronization, mutual exclusion, hiding and inaction, plus their duals and it was shown how they can be freely composed in series and in parallel to model sophisticated "glues". In this paper we explore the expressiveness of stateful connectors obtained by adding one-place buffers or unbounded buffers to the stateless connectors. The main results are: i) we show how different classes of connectors exactly correspond to suitable classes of Petri nets equipped with compositional interfaces, called nets with boundaries; ii) we show that the difference between strong and weak semantics in stateful connectors is reflected in the semantics of nets with boundaries by moving from the classic step semantics (strong case) to a novel banking semantics (weak case), where a step can be executed by taking some "debit" tokens to be given back during the same step; iii) we show that the corresponding bisimilarities are congruences (w.r.t. composition of connectors in series and in parallel); iv) we show that suitable monoidality laws, like those arising when representing stateful connectors in the tile model, can nicely capture concurrency aspects; and v) as a side result, we provide a basic algebra, with a finite set of symbols, out of which we can compose all P/T nets, fulfilling a long standing quest

    Relating BIP and Reo

    Get PDF
    Coordination languages simplify design and development of concurrent systems. Particularly, exogenous coordination languages, like BIP and Reo, enable system designers to express the interactions among components in a system explicitly. In this paper we establish a formal relation between BI(P) (i.e., BIP without the priority layer) and Reo, by defining transformations between their semantic models. We show that these transformations preserve all properties expressible in a common semantics. This formal relation comprises the basis for a solid comparison and consolidation of the fundamental coordination concepts behind these two languages. Moreover, this basis offers translations that enable users of either language to benefit from the toolchains of the other.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Observational Equivalence and Full Abstraction in the Symmetric Interaction Combinators

    Full text link
    The symmetric interaction combinators are an equally expressive variant of Lafont's interaction combinators. They are a graph-rewriting model of deterministic computation. We define two notions of observational equivalence for them, analogous to normal form and head normal form equivalence in the lambda-calculus. Then, we prove a full abstraction result for each of the two equivalences. This is obtained by interpreting nets as certain subsets of the Cantor space, called edifices, which play the same role as Boehm trees in the theory of the lambda-calculus

    Quantitative testing semantics for non-interleaving

    Full text link
    This paper presents a non-interleaving denotational semantics for the ?-calculus. The basic idea is to define a notion of test where the outcome is not only whether a given process passes a given test, but also in how many different ways it can pass it. More abstractly, the set of possible outcomes for tests forms a semiring, and the set of process interpretations appears as a module over this semiring, in which basic syntactic constructs are affine operators. This notion of test leads to a trace semantics in which traces are partial orders, in the style of Mazurkiewicz traces, extended with readiness information. Our construction has standard may- and must-testing as special cases

    Process algebra for performance evaluation

    Get PDF
    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server architectures, networks – can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions
    corecore