51 research outputs found

    Modelling and Detecting Faults of Permanent Magnet Synchronous Motors in Dynamic Operations

    Get PDF
    Paper VI is excluded from the dissertation until the article will be published.Permanent magnet synchronous motors (PMSMs) have played a key role in commercial and industrial applications, i.e. electric vehicles and wind turbines. They are popular due to their high efficiency, control simplification and large torque-to-size ratio although they are expensive. A fault will eventually occur in an operating PMSM, either by improper maintenance or wear from thermal and mechanical stresses. The most frequent PMSM faults are bearing faults, short-circuit and eccentricity. PMSM may also suffer from demagnetisation, which is unique in permanent magnet machines. Condition monitoring or fault diagnosis schemes are necessary for detecting and identifying these faults early in their incipient state, e.g. partial demagnetisation and inter-turn short circuit. Successful fault classification will ensure safe operations, speed up the maintenance process and decrease unexpected downtime and cost. The research in recent years is drawn towards fault analysis under dynamic operating conditions, i.e. variable load and speed. Most of these techniques have focused on the use of voltage, current and torque, while magnetic flux density in the air-gap or the proximity of the motor has not yet been fully capitalised. This dissertation focuses on two main research topics in modelling and diagnosis of faulty PMSM in dynamic operations. The first problem is to decrease the computational burden of modelling and analysis techniques. The first contributions are new and faster methods for computing the permeance network model and quadratic time-frequency distributions. Reducing their computational burden makes them more attractive in analysis or fault diagnosis. The second contribution is to expand the model description of a simpler model. This can be achieved through a field reconstruction model with a magnet library and a description of both magnet defects and inter-turn short circuits. The second research topic is to simplify the installation and complexity of fault diagnosis schemes in PMSM. The aim is to reduce required sensors of fault diagnosis schemes, regardless of operation profiles. Conventional methods often rely on either steady-state or predefined operation profiles, e.g. start-up. A fault diagnosis scheme robust to any speed changes is desirable since a fault can be detected regardless of operations. The final contribution is the implementation of reinforcement learning in an active learning scheme to address the imbalance dataset problem. Samples from a faulty PMSM are often initially unavailable and expensive to acquire. Reinforcement learning with a weighted reward function might balance the dataset to enhance the trained fault classifier’s performance.publishedVersio

    7th EEEIC International Workshop on Environment and Electrical Engineering : Wroclaw - Cottbus, 5 - 11. May 2008

    Get PDF
    The proposed solution meets the latest trends in world power engineering and has the lowest ecological costs amongst the accessible power engineering solutions. It is also in accordance with the Polish power engineering law, which takes into account the recommendations of the European Economic Commission, the Second Sulphur Protocol and the Framework Convention of the United Nations (concerning the changes of climate)

    Towards Multiclass Damage Detection and Localization using Limited Vibration Measurements

    Get PDF
    Traditional vibration-based damage detection methods provide structural health information based on their measured data (i.e., acceleration and displacement response). Over the last few decades, various model-based and time-frequency methods have shown great promises for damage identification and localization. However, the existing methods are unable to perform satisfactorily in many situations, including the presence of limited sensor measurements and training data, detection of minor and progressive damage, and identification of multiclass damage, creating constraints to make them free of user-intervention and implemented using the modern sensors. The main objective of this thesis is to develop algorithms capable of damage identification and localization using limited measurements that can address the limitation of the traditional methods while providing a minimal to no user-intervention damage identification process. The proposed research in this thesis involves casting damage detection problems as non-parametric and autonomous with the least user intervention. Progressive damage identification is presented using novel time-frequency methods, such as synchrosqueezing transform and multivariate empirical mode decomposition, showing improved sensitivity of identifying minor damage over traditional methods. A basis-free method, such as multivariate empirical mode decomposition, is employed for damage localization using limited sensors. The acquired vibration measurement is decomposed into its mono components, and a damage localization index based on modal energy is proposed to overcome the need for a large number of sensors. The limited measurement aspect of damage localization is explored by selecting fewer sensors, and it is shown that with limited measurements, the proposed method is as effective as a total number of measurements equals the number of degrees of freedom of the model. To create an autonomous damage identification framework, Artificial Intelligence-based methods are explored the first time for multiclass damage classification and localization. Due to the lack of availability of a large amount of data, the acquired vibration data is augmented using windowing of the data per damage class. A novel window-based one-dimensional convolutional neural network is explored to classify sequential time-series of vibration measurements with only one hidden layer. The robustness of the proposed method is further evaluated by a suite of parametric and sensitivity analysis. Improvement of this method is further accomplished by implementing a windowed Long Short-term Memory network capable of learning long-term dependencies of the sequential data. Finally, the proposed methods are validated using a suite of experimental and full-scale studies, including a high-rate dynamics experimental testbed, a stadia prototype experimental setup, the MIT green building, and the Z24 bridge
    • …
    corecore