5,248 research outputs found

    Operational semantics for MSC'96

    Get PDF
    Recently, the ITU-standardised specification language Message Sequence Chart has been extended with constructs for more complete and structured specifications. The new version of the language is called MSC'96. Currently, research is performed on the extension of the formal semantics towards a semantics for MSC'96. In this article, we aim at explaining the basic ideas behind the formal semantics. We give formal definitions of parts of the language, but most features are explained by informal examples and drawings. It takes several steps in order to follow the path from an MSC drawing to its formal meaning. First, the drawing must be converted to a concrete textual representation. This conversion is already defined implicitly in Z.120. Next, this syntax is transformed into a formal expression over some process algebra signature. MSC constructs are replaced by appropriate process algebra operators. This transformation is compositional. The operational behaviour of the process algebraic expression can be studied, or the expression can be interpreted into some mathematical model and compared to the interpretation of some other MSC

    Synthesis of behavioral models from scenarios

    No full text

    Automatic Translation of MSC Diagrams into Petri Nets

    Get PDF
    Development-engineers use in their work languages intended for software or hardware systems design, and test engineers utilize languages effective in verification, analysis of the systems properties and testing. Automatic interfaces between languages of these kinds are necessary in order to avoid ambiguous understanding of specification of models of the systems and inconsistencies in the initial requirements for the systems development. Algorithm of automatic translation of MSC (Message Sequence Chart) diagrams compliant with MSC’2000 standard into Petri Nets is suggested in this paper. Each input MSC diagram is translated into Petri Net (PN), obtained PNs are sequentially composed in order to synthesize a whole system in one final combined PN. The principle of such composition is defined through the basic element of MSC language — conditions. While translating reference table is developed for maintenance of consistent coordination between the input system’s descriptions in MSC language and in PN format. This table is necessary to present the results of analysis and verification on PN in suitable for the development-engineer format of MSC diagrams. The proof of algorithm correctness is based on the use of process algebra ACP. The most significant feature of the given algorithm is the way of handling of conditions. The direction for future work is the development of integral, partially or completely automated technological process, which will allow designing system, testing and verifying its various properties in the one frame

    A Semantics for Timed MSC

    Get PDF
    AbstractMessage Sequence Charts (MSC) is a graphical and textual specification language developed by ITU-T. It is widely used in telecommunication software engineering for specifying behavioral scenarios. Recently, the time concept has been introduced into MSC'2000. To support the specification and verification of real-time systems using timed MSC, we need to define its formal semantics. In this paper, we use timed lposet as a semantic model and give a formal semantics for timed MSC. We first define an event in a timed MSC as a timed lposet, then give a formal semantics for timed basic MSCs, timed MSCs with structures and high-level MSCs. In this paper, we also discuss some important issues related to timed MSC

    Ground Systems Development Environment (GSDE) interface requirements analysis

    Get PDF
    A set of procedural and functional requirements are presented for the interface between software development environments and software integration and test systems used for space station ground systems software. The requirements focus on the need for centralized configuration management of software as it is transitioned from development to formal, target based testing. This concludes the GSDE Interface Requirements study. A summary is presented of findings concerning the interface itself, possible interface and prototyping directions for further study, and results of the investigation of the Cronus distributed applications environment

    QuantUM: Quantitative Safety Analysis of UML Models

    Full text link
    When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysis model and the formal methods used during the analysis are hidden from the user. We illustrate the usefulness of our approach using an industrial strength case study.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    A Survey of Languages for Specifying Dynamics: A Knowledge Engineering Perspective

    Get PDF
    A number of formal specification languages for knowledge-based systems has been developed. Characteristics for knowledge-based systems are a complex knowledge base and an inference engine which uses this knowledge to solve a given problem. Specification languages for knowledge-based systems have to cover both aspects. They have to provide the means to specify a complex and large amount of knowledge and they have to provide the means to specify the dynamic reasoning behavior of a knowledge-based system. We focus on the second aspect. For this purpose, we survey existing approaches for specifying dynamic behavior in related areas of research. In fact, we have taken approaches for the specification of information systems (Language for Conceptual Modeling and TROLL), approaches for the specification of database updates and logic programming (Transaction Logic and Dynamic Database Logic) and the generic specification framework of abstract state machine

    Message sequence charts in the software engineering process

    Get PDF
    The software development process benefits from the use of Message Sequence Charts (MSC), which is a graphical language for displyaing the interaction behaviour of a system. We describe canonical applications of MSC independent of any software development methodology. We illustrate the use of MSC with a case study: the Meeting Scheduler

    Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system

    Get PDF
    Models and simulation furnish abstractions to manage complexities allowing engineers to visualize the proposed system and to analyze and validate system behavior before constructing it. Unified Modeling Language (UML) and its systems engineering extension, Systems Modeling Language (SysML), provide a rich set of diagrams for systems specification. However, the lack of executable semantics of such notations limits the capability of analyzing and verifying defined specifications. This research has developed an executable system architecting framework based on SysML-CPN transformation, which introduces dynamic model analysis into SysML modeling by mapping SysML notations to Colored Petri Net (CPN), a graphical language for system design, specification, simulation, and verification. A graphic user interface was also integrated into the CPN model to enhance the model-based simulation. A set of methodologies has been developed to achieve this framework. The aim is to investigate system wide properties of the proposed system, which in turn provides a basis for system reconfiguration --Abstract, page iii
    corecore