4,424 research outputs found

    Cell degradation detection based on an inter-cell approach

    Get PDF
    Fault management is a crucial part of cellular network management systems. The status of the base stations is usually monitored by well-defined key performance indicators (KPIs). The approaches for cell degradation detection are based on either intra-cell or inter-cell analysis of the KPIs. In intra-cell analysis, KPI profiles are built based on their local history data whereas in inter-cell analysis, KPIs of one cell are compared with the corresponding KPIs of the other cells. In this work, we argue in favor of the inter-cell approach and apply a degradation detection method that is able to detect a sleeping cell that could be difficult to observe using traditional intra-cell methods. We demonstrate its use for detecting emulated degradations among performance data recorded from a live LTE network. The method can be integrated in current systems because it can operate using existing KPIs without any major modification to the network infrastructure

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Telecommunications Network Planning and Maintenance

    Get PDF
    Telecommunications network operators are on a constant challenge to provide new services which require ubiquitous broadband access. In an attempt to do so, they are faced with many problems such as the network coverage or providing the guaranteed Quality of Service (QoS). Network planning is a multi-objective optimization problem which involves clustering the area of interest by minimizing a cost function which includes relevant parameters, such as installation cost, distance between user and base station, supported traffic, quality of received signal, etc. On the other hand, service assurance deals with the disorders that occur in hardware or software of the managed network. This paper presents a large number of multicriteria techniques that have been developed to deal with different kinds of problems regarding network planning and service assurance. The state of the art presented will help the reader to develop a broader understanding of the problems in the domain

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Cell fault management using machine learning techniques

    Get PDF
    This paper surveys the literature relating to the application of machine learning to fault management in cellular networks from an operational perspective. We summarise the main issues as 5G networks evolve, and their implications for fault management. We describe the relevant machine learning techniques through to deep learning, and survey the progress which has been made in their application, based on the building blocks of a typical fault management system. We review recent work to develop the abilities of deep learning systems to explain and justify their recommendations to network operators. We discuss forthcoming changes in network architecture which are likely to impact fault management and offer a vision of how fault management systems can exploit deep learning in the future. We identify a series of research topics for further study in order to achieve this

    A Machine Learning framework for Sleeping Cell Detection in a Smart-city IoT Telecommunications Infrastructure

    Full text link
    The smooth operation of largely deployed Internet of Things (IoT) applications will depend on, among other things, effective infrastructure failure detection. Access failures in wireless network Base Stations (BSs) produce a phenomenon called "sleeping cells", which can render a cell catatonic without triggering any alarms or provoking immediate effects on cell performance, making them difficult to discover. To detect this kind of failure, we propose a Machine Learning (ML) framework based on the use of Key Performance Indicator (KPI) statistics from the BS under study, as well as those of the neighboring BSs with propensity to have their performance affected by the failure. A simple way to define neighbors is to use adjacency in Voronoi diagrams. In this paper, we propose a much more realistic approach based on the nature of radio-propagation and the way devices choose the BS to which they send access requests. We gather data from large-scale simulators that use real location data for BSs and IoT devices and pose the detection problem as a supervised binary classification problem. We measure the effects on the detection performance by the size of time aggregations of the data, the level of traffic and the parameters of the neighborhood definition. The Extra Trees and Naive Bayes classifiers achieve Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) scores of 0.996 and 0.993, respectively, with False Positive Rate (FPR) under 5 %. The proposed framework holds potential for other pattern recognition tasks in smart-city wireless infrastructures, that would enable the monitoring, prediction and improvement of the Quality of Service (QoS) experienced by IoT applications.Comment: Submitted to the IEEE Access Journa

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    corecore