6,875 research outputs found

    TOOLS TO SUPPORT TRANSPORTATION EMISSIONS REDUCTION EFFORTS: A MULTIFACETED APPROACH

    Get PDF
    The transportation sector is a significant contributor to current global climatic problems, one of the most prominent problems that today's society faces. In this dissertation, three complementary problems are addressed to support emissions reduction efforts by providing tools to help reduce demand for fossil fuels. The first problem addresses alternative fuel vehicle (AFV) fleet operations considering limited infrastructure availability and vehicle characteristics that contribute to emission reduction efforts by: supporting alternative fuel use and reducing carbon-intensive freight activity. A Green Vehicle Routing Problem (G-VRP) is formulated and techniques are proposed for its solution. These techniques will aid organizations with AFV fleets in overcoming difficulties that exist as a result of limited refueling infrastructure and will allow companies considering conversion to a fleet of AFVs to understand the potential impact of their decision on daily operations and costs. The second problem is aimed at supporting SOV commute trip reduction efforts through alternative transportation options. This problem contributes to emission reduction efforts by supporting reduction of carbon-intensive travel activity. Following a descriptive analysis of commuter survey data obtained from the University of Maryland, College Park campus, ordered-response models were developed to investigate the market for vanpooling. The model results show that demand for vanpooling in the role of passenger and driver have differences and the factors affecting these demands are not necessarily the same. Factors considered include: status, willingness-to-pay, distance, residential location, commuting habits, demographics and service characteristics. The third problem focuses on providing essential input data, origin-destination (OD) demand, for analysis of various strategies, to address emission reduction by helping to improve system efficiency and reducing carbon-intensive travel activity. A two-stage subarea OD demand estimation procedure is proposed to construct and update important time-dependent OD demand input for subarea analysis in an effort to overcome the computational limits of Dynamic Traffic Assignment (DTA) methodologies. The proposed method in conjunction with path-based simulation-assignment systems can provide an evolving platform for integrating operational considerations in planning models for effective decision support for agencies that are considering strategies for transportation emissions reduction

    Reshaped Urban Mobility

    Get PDF
    The application of novel solutions in vehicle and information technologies and the need for sustainability result in significant change in urban mobility. Moreover, autonomous vehicles (AVs) are expected to contribute to this alteration as well. The mobility is considered not only a single trip from A to B anymore but a comprehensive service. Shared and demand-driven services are more and more available besides traditional transportation modes. Modes are presented, evaluated, and compared, giving a realistic scenario for upcoming changes and opportunities. The development of the passenger transportation system requires an integrated approach considering user expectations. It is facilitated by the concept of Mobility-as-a-Service (MaaS), in which improvement of the quality has higher relevance than before. The impacts of the alteration are also summarized

    Assessing the Efficiency of Mass Transit Systems in the United States

    Get PDF
    Frustrated with increased parking problems, unstable gasoline prices, and stifling traffic congestion, a growing number of metropolitan city dwellers consider utilizing the mass transit system. Reflecting this sentiment, a ridership of the mass transit system across the United States has been on the rise for the past several years. A growing demand for the mass transit system, however, necessitates the expansion of service offerings, the improvement of basic infrastructure/routes, and the additional employment of mass transit workers, including drivers and maintenance crews. Such a need requires the optimal allocation of financial and human resources to the mass transit system in times of shrinking budgets and government downsizing. Thus, the public transit authority is faced with the dilemma of “doing more with less.” That is to say, the public transit authority needs to develop a “lean” strategy which can maximize transit services with the minimum expenses. To help the public transit authority develop such a lean strategy, this report identifies the best-in-class practices in the U.S. transit service sector and proposes transit policy guidelines that can best exploit lean principles built upon best-in-class practices

    Towards Understanding the Benefits and Challenges of Demand Responsive Public Transit- A Case Study in the City of Charlotte, NC

    Full text link
    Access to adequate public transportation plays a critical role in inequity and socio-economic mobility, particularly in low-income communities. Low-income workers who rely heavily on public transportation face a spatial disparity between home and work, which leads to higher unemployment, longer job searches, and longer commute times. The overarching goal of this study is to get initial data that would result in creating a connected, coordinated, demand-responsive, and efficient public bus system that minimizes transit gaps for low-income, transit-dependent communities. To create equitable metropolitan public transportation, this paper evaluates existing CATS mobile applications that assist passengers in finding bus routes and arrival times. Our community survey methodology includes filling out questionnaires on Charlotte's current bus system on specific bus lines and determining user acceptance for a future novel smart technology. We have also collected data on the demand and transit gap for a real-world pilot study, Sprinter bus line, Bus line 7, Bus line 9, and Bus lines 97-99. These lines connect all of Charlotte City's main areas and are the most important bus lines in the system. On the studied routes, the primary survey results indicate that the current bus system has many flaws, the major one being the lack of proper timing to meet the needs of passengers. The most common problems are long commutes and long waiting times at stations. Moreover, the existing application provides inaccurate information, and on average, 80 percent of travelers and respondents are inclined to use new technology.Comment: 22 pages, 54 figure

    Bus timetable optimization model in response to the diverse and uncertain requirements of passengers for travel comfort

    Get PDF
    Most existing public transit systems have a fixed dispatching and service mode, which cannot effectively allocate resources from the perspective of the interests of all participants, resulting in resource waste and dissatisfaction. Low passenger satisfaction leads to a considerable loss of bus passengers and further reduces the income of bus operators. This study develops an optimization model for bus schedules that considers vehicle types and offers two service levels based on heterogeneous passenger demands. In this process, passenger satisfaction, bus company income, and government subsidies are considered. A bilevel model is proposed with a lower-level passenger ride simulation model and an upper-level multiobjective optimization model to maximize the interests of bus companies, passengers, and the government. To verify the effectiveness of the proposed methodology, a real-world case from Guangzhou is presented and analyzed using the nondominated sorting genetic algorithm-II (NSGA-II), and the related Pareto front is obtained. The results show that the proposed bus operation system can effectively increase the benefits for bus companies, passengers, and the governmen

    Overview of Infrastructure Charging, part 4, IMPROVERAIL Project Deliverable 9, “Improved Data Background to Support Current and Future Infrastructure Charging Systems”

    Get PDF
    Improverail aims are to further support the establishment of railway infrastructure management in accordance with Directive 91/440, as well as the new railway infrastructure directives, by developing the necessary tools for modelling the management of railway infrastructure; by evaluating improved methods for capacity and resources management, which allow the improvement of the Life Cycle Costs (LCC) calculating methods, including elements related to vehicle - infrastructure interaction and external costs; and by improving data background in support of charging for use of railway infrastructure. To achieve these objectives, Improverail is organised along 8 workpackages, with specific objectives, responding to the requirements of the task 2.2.1/10 of the 2nd call made in the 5th RTD Framework Programme in December 1999.This part is the task 7.1 (Review of infrastructure charging systems) to the workpackage 7 (Analysis of the relation between infrastructure cost variation and diversity of infrastructure charging systems).Before explaining the economic characteristics of railway and his basic pricing principles, authors must specify the objectives of railways infrastructure charging.principle of pricing ; rail infrastructure charging ; public service obligation ; rail charging practice ; Europe ; Improverail

    Concept of Advanced Personal Rapid Transit at Airports

    Get PDF
    The increase in air transportation demand implies challenges on airport ground access. Using private transportation mode to reach the airport is a typical practice which results in the vast demand for parking facilities. These facilities are located farther from the terminal, increasing the access time. This research aimed to develop the concept of an advance airport Personal Rapid Transit (PRT) that connects parking facilities to the terminal as a shuttle service, and provides on-board integrated flight-related services, such as check-in and baggage handling. The system architecture and operational models were developed, thus all relevant components and functions were identified, especially focusing on information management tasks. A questionnaire survey was performed and conducted at Budapest Airport to reveal the user expectations towards an advanced PRT service at the airport. Moreover, a layout selection method was developed which was applied to Budapest Airport as a case study. The proposed PRT service provides a seamless transit by access to airport terminals from remote parking facilities conveniently and the time consumption of flight-related activities is significantly reduced too

    Welfare consequences of request stops at transport services with low demand

    Get PDF
    Background: Demand-responsive transport is an alternative to fixed-route, fixed-scheduled transport services in low-demand areas. Objective: This paper discusses the welfare and distributional consequences of the implementation of request stops (RSs) on a scheduled fixed-stop transport service. Method: The discussion is based on a general welfare model. The focus is on discussing how the magnitudes of the welfare effects on different groups of travellers are influenced by travel patterns and the characteristics of the travellers involved. Results: The effects of implementing RSs are critically dependent on the booking procedure, the variation in demand throughout the day, and the travellers’ time values per hour when on the mode and when arriving at the destinations before having any appointments. Moreover, the benefits for the operators and the authorities depend strongly on the risk profile in the tendering contract.publishedVersio
    • 

    corecore