1,996 research outputs found

    Frequency-Domain Analysis of Linear Time-Periodic Systems

    Get PDF
    In this paper, we study convergence of truncated representations of the frequency-response operator of a linear time-periodic system. The frequency-response operator is frequently called the harmonic transfer function. We introduce the concepts of input, output, and skew roll-off. These concepts are related to the decay rates of elements in the harmonic transfer function. A system with high input and output roll-off may be well approximated by a low-dimensional matrix function. A system with high skew roll-off may be represented by an operator with only few diagonals. Furthermore, the roll-off rates are shown to be determined by certain properties of Taylor and Fourier expansions of the periodic systems. Finally, we clarify the connections between the different methods for computing the harmonic transfer function that are suggested in the literature

    On Dynamics of Integrate-and-Fire Neural Networks with Conductance Based Synapses

    Get PDF
    We present a mathematical analysis of a networks with Integrate-and-Fire neurons and adaptive conductances. Taking into account the realistic fact that the spike time is only known within some \textit{finite} precision, we propose a model where spikes are effective at times multiple of a characteristic time scale δ\delta, where δ\delta can be \textit{arbitrary} small (in particular, well beyond the numerical precision). We make a complete mathematical characterization of the model-dynamics and obtain the following results. The asymptotic dynamics is composed by finitely many stable periodic orbits, whose number and period can be arbitrary large and can diverge in a region of the synaptic weights space, traditionally called the "edge of chaos", a notion mathematically well defined in the present paper. Furthermore, except at the edge of chaos, there is a one-to-one correspondence between the membrane potential trajectories and the raster plot. This shows that the neural code is entirely "in the spikes" in this case. As a key tool, we introduce an order parameter, easy to compute numerically, and closely related to a natural notion of entropy, providing a relevant characterization of the computational capabilities of the network. This allows us to compare the computational capabilities of leaky and Integrate-and-Fire models and conductance based models. The present study considers networks with constant input, and without time-dependent plasticity, but the framework has been designed for both extensions.Comment: 36 pages, 9 figure

    Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate

    Full text link
    The rate of entropy production in a classical dynamical system is characterized by the Kolmogorov-Sinai entropy rate hKSh_{\mathrm{KS}} given by the sum of all positive Lyapunov exponents of the system. We prove a quantum version of this result valid for bosonic systems with unstable quadratic Hamiltonian. The derivation takes into account the case of time-dependent Hamiltonians with Floquet instabilities. We show that the entanglement entropy SAS_A of a Gaussian state grows linearly for large times in unstable systems, with a rate ΛA≤hKS\Lambda_A \leq h_{KS} determined by the Lyapunov exponents and the choice of the subsystem AA. We apply our results to the analysis of entanglement production in unstable quadratic potentials and due to periodic quantum quenches in many-body quantum systems. Our results are relevant for quantum field theory, for which we present three applications: a scalar field in a symmetry-breaking potential, parametric resonance during post-inflationary reheating and cosmological perturbations during inflation. Finally, we conjecture that the same rate ΛA\Lambda_A appears in the entanglement growth of chaotic quantum systems prepared in a semiclassical state.Comment: 50+17 Pages, 11 figure

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Time Series Analysis

    Get PDF
    We provide a concise overview of time series analysis in the time and frequency domains, with lots of references for further reading.time series analysis, time domain, frequency domain, Research Methods/ Statistical Methods,

    Almost sure error bounds for data assimilation in dissipative systems with unbounded observation noise

    Get PDF
    Data assimilation is uniquely challenging in weather forecasting due to the high dimensionality of the employed models and the nonlinearity of the governing equations. Although current operational schemes are used successfully, our understanding of their long-term error behaviour is still incomplete. In this work, we study the error of some simple data assimilation schemes in the presence of unbounded (e.g. Gaussian) noise on a wide class of dissipative dynamical systems with certain properties, including the Lorenz models and the 2D incompressible Navier-Stokes equations. We exploit the properties of the dynamics to derive analytic bounds on the long-term error for individual realisations of the noise in time. These bounds are proportional to the variance of the noise. Furthermore, we find that the error exhibits a form of stationary behaviour, and in particular an accumulation of error does not occur. This improves on previous results in which either the noise was bounded or the error was considered in expectation only
    • …
    corecore