9,572 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    A framework concept for data visualization and structuring in a complex production process

    Get PDF
    This paper provides a concept study for a visual interface framework together with the software Sequence Planner for implementation on a complex industrial process for extracting process information in an efficient way and how to make use of a lot of data to visualize it in a standardized human machine interface for different user perspectives. The concept is tested and validated on a smaller simulation of a paint booth with several interconnected and supporting control systems to prove the functionality and usefulness in this kind of production system.The paper presents the resulting five abstraction levels in the framework concept, from a production top view down to the signal exchange between the different resources in one production cell, together with additional features. The simulation proves the setup with Sequence Planner and the visual interface to work by extract and present process data from a running sequence

    Industry 4.0 implications in logistics: an overview

    Get PDF
    During the last decade, the use and evolution of Information and Communication Technologies (ICT) in industry have become unavoidable. The emergence of the Industry Internet of Things (IIoT) promoted new challenges in logistic domain, which might require technological changes such as: high need for transparency (supply chain visibility); integrity control (right products, at the right time, place, quantity condition and at the right cost) in the supply chains. These evolvements introduce the concept of Logistics 4.0. In this paper, it is presented some reflections regarding the adequate requirements and issues enabling organizations to be efficient, and fully operational in Logistics 4.0 context.(undefined)info:eu-repo/semantics/publishedVersio

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A Survey of Mobile Edge Computing in the Industrial Internet

    Full text link
    With the advent of a new round of the Industrial Revolution, the Industrial Internet will carry the convergence of heterogeneous network and the dynamic reconfiguration of industrial equipment. In order to further provide higher performance of network capabilities, the Industrial Internet has experienced unprecedented growth while facing enormous challenges from the actual needs of industrial networks. The typical scenarios in industrial applications, combined with the technical advantages of mobile edge computing, are described in view of the low latency, high bandwidth and high reliability demanded by the Industrial Internet in the new era. The key technologies of mobile edge computing for the Industrial Internet have been outlined in this treatise, whose feasibility and importance are demonstrated by typical industrial applications that have been deployed. As combined with the development trend of the Industrial Internet, this paper summarizes the existing work and discusses the future research direction of key technologies of mobile edge computing for the Industrial Internet.Comment: 2019 The 7th International Conference on Information, Communication and Network
    • …
    corecore