269 research outputs found

    Viewing the Future? Virtual Reality In Journalism

    Get PDF
    Journalism underwent a flurry of virtual reality content creation, production and distribution starting in the final months of 2015. The New York Times distributed more than 1 million cardboard virtual reality viewers and released an app showing a spherical video short about displaced refugees. The Los Angeles Times landed people next to a crater on Mars. USA TODAY took visitors on a ride-along in the "Back to the Future" car on the Universal Studios lot and on a spin through Old Havana in a bright pink '57 Ford. ABC News went to North Korea for a spherical view of a military parade and to Syria to see artifacts threatened by war. The Emblematic Group, a company that creates virtual reality content, followed a woman navigating a gauntlet of anti- abortion demonstrators at a family planning clinic and allowed people to witness a murder-suicide stemming from domestic violence.In short, the period from October 2015 through February 2016 was one of significant experimentation with virtual reality (VR) storytelling. These efforts are part of an initial foray into determining whether VR is a feasible way to present news. The year 2016 is shaping up as a period of further testing and careful monitoring of potential growth in the use of virtual reality among consumers

    Um jogo digital em ambientes imersivos no apoio às vítimas do acidente vascular cerebral

    Get PDF
    A sociedade moderna está a testemunhar um aumento do envelhecimento médio populacional, graças à melhoria da qualidade dos serviços de saúde e de medicação. No entanto, o envelhecimento cria outros problemas como doenças físicas ou mentais com grandes taxas de incidência. O acidente vascular cerebral (AVC) é uma das doenças que afeta sobretudo a população idosa, e o processo de reabilitação é doloroso e difícil de percorrer, sendo que a forma mais eficaz de tratar o doente é na atuação rápida e eficaz da fisioterapia. O consumo de videojogos pela população sénior está a aumentar, sendo que é cada vez mais viável a introdução de novos artefactos digitais no processo de recuperação cerebral e motora pela vítima de AVC. Os programas tradicionais de recuperação para um paciente que tenha sofrido um AVC são organizados em tratamento fisioterapêutico longo e monótono, com a possibilidade de envolver tarefas domésticas desmotivadoras. No entanto existem soluções tecnológicas que monitorizam as tarefas repetitivas de movimento. O aparelho de monitorização aliado a um jogo digital tem a possibilidade de estimular o paciente nas melhorias motoras e cognitivas como uma alternativa ao tratamento fisioterapêutico tradicional. As soluções desenvolvidas até ao momento são escassas, sendo que existe uma grande margem para mudar essa realidade. O principal objetivo desta pesquisa é o de explorar caraterísticas relacionadas com o display, interface gestual, narrativa, género, estilo gráfico, dificuldade, e linguagem que um jogo digital possa ter, para complementar as sessões de fisioterapia na recuperação do AVC pela população sénior, através da criação de um protótipo experimental. Esta investigação empírica tem um carácter exploratório e tem como base a metodologia Development Research (Van den Akker, Branch, Gustafson, Nieveen, & Plomp, 1999). Os resultados indicam que o controlador de movimento – leap motion – é um dispositivo que pode ser adaptado à fisioterapia orientada ao AVC, através de movimentos específicos e contextualizados no ambiente de jogo. Adicionalmente, foi possível observar uma rejeição elevada no uso de Head Mounted Displays devido a dores oculares e perda de orientação.Modern society is witnessing a general population ageing increase in average life expectancy thanks to better health services and medication. However, ageing creates life quality problems, such has several disabilities, diseases, or mental illness with high incidence rates. Stroke patients are a main concern for such ages, and the rehabilitation process is painful and shows very small recovery improvements over time, unless treated in a fast manner. The consumption of videogames by the senior population is increasing, and it is feasible to introduce new digital artefacts for the process of recovering from brain damage and low motricity for the stroke victim. Typical rehabilitation programs for stroke patients are organized in long and monotonous physiotherapy treatment, with the possibility of involving domestic tasks, which can increase the risk of treatment withdrawal derived from low motivation. However, there are some technological solutions that can effectively help in the supervision of those repetitive tasks. A monitoring device connected to a digital game can effectively stimulate a person in cognitive and physical improvements as an alternative to traditional physiotherapy treatment. There is room for improvement in order to change the reality of stroke rehabilitation. The main objective of this research is to explore characteristics related to display, gesture interface device, narrative, genre, game art design, difficulty, and language that can be included in a digital game to complement physiotherapy sessions for stroke rehabilitation, through the creation of a functional prototype. The empirical research has an exploratory character and is based on the methodology “Development Research” (Van den Akker et al., 1999). The results indicate that the motion controller - leap motion - is a device that can be adapted to stroke-oriented physiotherapy through specific movements and contextualized in the game environment. Additionally, it was possible to observe a high rejection in the use of Head Mounted Displays due to ocular pain and orientation loss.Mestrado em Comunicação Multimédi

    Interfaces for human-centered production and use of computer graphics assets

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Mixed reality simulators

    Get PDF
    A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science Johannesburg, May 2017.Virtual Reality (VR) is widely used in training simulators of dangerous or expensive vehicles such as aircraft or heavy mining machinery. The vehicles often have very complicated controls that users need to master before attempting to operate a real world version of the machine. VR allows users to safely train in a simulated environment without the risk of injury or damaging expensive equipment in the field. VR however visually cuts off the user from the real environment,whichmayobtainobstructions. Usersareunabletosafelymoveorgesturewhilewearing aVRheadset. Additionallyusersareunabletousestandardinputdevicessuchasmiceandkeyboards. Bymixinginaliveviewofthetherealworld,theusercanstillseeandinteractwiththe physical environment. The contribution of this research is presenting ways of using Mixed RealitytoenhancetheuserexperienceoftraditionalVRbasedsimulators. MixedRealityimproves on traditional VR simulators by allowing the user the safety and freedom of not being cut off from the real world, allowing interaction and the tactile feedback of interacting with complex physical controls, while still allowing simultaneous use of virtual controls and by adding a real world reference point to aid in diminishing simulator sickness caused by visual motionA dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of ScienceGR201

    Review of three-dimensional human-computer interaction with focus on the leap motion controller

    Get PDF
    Modern hardware and software development has led to an evolution of user interfaces from command-line to natural user interfaces for virtual immersive environments. Gestures imitating real-world interaction tasks increasingly replace classical two-dimensional interfaces based on Windows/Icons/Menus/Pointers (WIMP) or touch metaphors. Thus, the purpose of this paper is to survey the state-of-the-art Human-Computer Interaction (HCI) techniques with a focus on the special field of three-dimensional interaction. This includes an overview of currently available interaction devices, their applications of usage and underlying methods for gesture design and recognition. Focus is on interfaces based on the Leap Motion Controller (LMC) and corresponding methods of gesture design and recognition. Further, a review of evaluation methods for the proposed natural user interfaces is given

    Direct modeling techniques in the conceptual design stage in immersive environments for DfA&D

    Get PDF
    Due to the fast – growing competition of the mass – products markets, companies are looking for new technologies to maximize productivity and minimize time and costs. In the perspective of Computer Aided Process Planning (CAPP), companies want to optimize fixture design and assembly planning for different goals. To meet these demands, the designers' interest in Design for Assembly and Disassembly is growing considerably and is increasingly being integrated into the CAPP. The work described in this thesis aims to exploit immersive technologies to support the design of mating elements and assembly / disassembly, by developing a data exchange flow between the immersive environment and the modeling environment that provides the high – level modeling rules, both for modeling features and for assembly relationships. The main objective of the research is to develop the capability to model and execute simple coupling commands in a virtual environment by using fast direct modeling commands. With this tool the designer can model the coupling elements, position them and modify their layout. Thanks to the physical engine embedded in the scene editor software, it is possible to take into consideration physical laws such as gravity and collision between elements. A library of predefined assembly features has been developed through the use of an external modeling engine and put into communication with the immersive interaction environment. Subsequently, the research involved the study of immersive technologies for workforce development and training of workers. The research on immersive training involved industrial case studies, such as the projection of the disassembly sequence of an industrial product on a head mounted display, and less industrial case studies, such as the manual skills development of carpenters for AEC sectors and the surgeon training in the pre – operative planning in medical field

    Augmented reality as a telemedicine platform for remote procedural training

    Get PDF
    Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an augmented reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor's hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers' perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform

    Application-driven visual computing towards industry 4.0 2018

    Get PDF
    245 p.La Tesis recoge contribuciones en tres campos: 1. Agentes Virtuales Interactivos: autónomos, modulares, escalables, ubicuos y atractivos para el usuario. Estos IVA pueden interactuar con los usuarios de manera natural.2. Entornos de RV/RA Inmersivos: RV en la planificación de la producción, el diseño de producto, la simulación de procesos, pruebas y verificación. El Operario Virtual muestra cómo la RV y los Co-bots pueden trabajar en un entorno seguro. En el Operario Aumentado la RA muestra información relevante al trabajador de una manera no intrusiva. 3. Gestión Interactiva de Modelos 3D: gestión online y visualización de modelos CAD multimedia, mediante conversión automática de modelos CAD a la Web. La tecnología Web3D permite la visualización e interacción de estos modelos en dispositivos móviles de baja potencia.Además, estas contribuciones han permitido analizar los desafíos presentados por Industry 4.0. La tesis ha contribuido a proporcionar una prueba de concepto para algunos de esos desafíos: en factores humanos, simulación, visualización e integración de modelos

    Freehand-Steering Locomotion Techniques for Immersive Virtual Environments: A Comparative Evaluation

    Get PDF
    Virtual reality has achieved significant popularity in recent years, and allowing users to move freely within an immersive virtual world has become an important factor critical to realize. The user’s interactions are generally designed to increase the perceived realism, but the locomotion techniques and how these affect the user’s task performance still represent an open issue, much discussed in the literature. In this article, we evaluate the efficiency and effectiveness of, and user preferences relating to, freehand locomotion techniques designed for an immersive virtual environment performed through hand gestures tracked by a sensor placed in the egocentric position and experienced through a head-mounted display. Three freehand locomotion techniques have been implemented and compared with each other, and with a baseline technique based on a controller, through qualitative and quantitative measures. An extensive user study conducted with 60 subjects shows that the proposed methods have a performance comparable to the use of the controller, further revealing the users’ preference for decoupling the locomotion in sub-tasks, even if this means renouncing precision and adapting the interaction to the possibilities of the tracker sensor

    Investigating User Experience Using Gesture-based and Immersive-based Interfaces on Animation Learners

    Get PDF
    Creating animation is a very exciting activity. However, the long and laborious process can be extremely challenging. Keyframe animation is a complex technique that takes a long time to complete, as the procedure involves changing the poses of characters through modifying the time and space of an action, called frame-by-frame animation. This involves the laborious, repetitive process of constantly reviewing results of the animation in order to make sure the movement-timing is accurate. A new approach to animation is required in order to provide a more intuitive animating experience. With the evolution of interaction design and the Natural User Interface (NUI) becoming widespread in recent years, a NUI-based animation system is expected to allow better usability and efficiency that would benefit animation. This thesis investigates the effectiveness of gesture-based and immersive-based interfaces as part of animation systems. A practice-based element of this research is a prototype of the hand gesture interface, which was created based on experiences from reflective practices. An experimental design is employed to investigate the usability and efficiency of gesture-based and immersive-based interfaces in comparison to the conventional GUI/WIMP interface application. The findings showed that gesture-based and immersive-based interfaces are able to attract animators in terms of the efficiency of the system. However, there was no difference in their preference for usability with the two interfaces. Most of our participants are pleasant with NUI interfaces and new technologies used in the animation process, but for detailed work and taking control of the application, the conventional GUI/WIMP is preferable. Despite the awkwardness of devising gesture-based and immersive-based interfaces for animation, the concept of the system showed potential for a faster animation process, an enjoyable learning system, and stimulating interest in a kinaesthetic learning experience
    corecore