136,616 research outputs found

    A Power-Efficient Methodology for Mapping Applications on Multi-Processor System-on-Chip Architectures

    Get PDF
    This work introduces an application mapping methodology and case study for multi-processor on-chip architectures. Starting from the description of an application in standard sequential code (e.g. in C), first the application is profiled, parallelized when possible, then its components are moved to hardware implementation when necessary to satisfy performance and power constraints. After mapping, with the use of hardware objects to handle concurrency, the application power consumption can be further optimized by a task-based scheduler for the remaining software part, without the need for operating system support. The key contributions of this work are: a methodology for high-level hardware/software partitioning that allows the designer to use the same code for both hardware and software models for simulation, providing nevertheless preliminary estimations for timing and power consumption; and a task-based scheduling algorithm that does not require operating system support. The methodology has been applied to the co-exploration of an industrial case study: an MPEG4 VGA real-time encoder

    Simultaneous multithreading: Operating system perspective

    Get PDF
    Developing CPU architecture is a very complicated, iterative process that requires significant time and money investments. The motivation for this work is to find ways to decreases the amount of time and money needed for the development of hardware architectures. The main problem is that it is very difficult to determine the performance of the architecture, since it is impossible to take any performance measurements untill upon completion of the development process. Consecutively, it is impossible to improve the performance of the product or to predict the influence of different parts of the architecture on the architecture\u27s overall performance. Another problem is that this type of development does not allow for the developed system to be reconfigured or altered without complete re-development. . The solution to the problems mentioned above is the software simulators that allow researching the architecture before even starting to cut the silicon.. Simultaneous multithreading (SMT) is a modern approach to CPU design. This technique increases the system throughput by decreasing both total instruction delay and stall times of the CPU. The gain in performance of a typical SMT processor is achieved by allowing the instructions from several threads to be fetched by an operating system into the CPU simultaneously. In order to function successfully the CPU needs software support. In modern computer systems the influence of an operating system on overall system performance can no longer be ignored. It is important to understand that the union of the CPU and the supporting operating system and their interdependency determines the overall performance of any computer system. In the system that has been implemented on hardware level such analysis is impossible, since the hardware system is neither flexible nor configurable. However, in the SMT architecture, the system is capable of performing some useful work even if a task has generated an error. A wide range of simulators is described in the literature, and a lot of them are publicly accessible. The main goal of this work is to modify an existing SEVIOS/Topsy simulator to achieve a simple, configurable, publicly accessible SMT SEVIOS/Topsy simulator that must also include an SMT Topsy.. The simulator should demonstrate the fetching process of the SMT MIPS, as well as scheduling aspects of the CPU and the operating system integrated environment.. This work covers a broad range of aspects, among which are: 1) Completion of SMT MIPS and SMT Topsy specifications; 2) Integration of MXS into SIMOS/Topsy; 3) Modifications to the fetching unit of MXS that allow to support SMT; 4) Addition of SMT support to Topsy;; This work uses Topsy/R4000 simulator developed at Swiss Federal Institute of Technology, and the MXS (R10000) part of the SimOS simulator developed at Stanford University. Development process utilizes C high-level language, Intel and MIPS assembly languages. The result of this work is a development of a complete computer system software simulator. The simulator allows taking performance measurements and reconfiguration of SMT Topsy and the fetching unit of the SMT MXS. The simulator is modular: that is any of its parts can be substituted with other parts that perform similar functionality. It also means that the whole simulator can be integrated into a larger scale simulation project. The development of this simulator significantly decreases the amount of time and money needed for the development of hardware architectures and provides new ways in researching the influence of an operating system on the performance of the computer system as a whole

    CO2 Reduction Assembly Prototype Using Microlith-Based Sabatier Reactor for Ground Demonstration

    Get PDF
    The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) architectures for both low-earth orbit and long-term manned space missions. Carbon dioxide can be reacted with H2, obtained from the electrolysis of water, via Sabatier reaction to produce methane and H2O. Methane can be stored and utilized as propellant while H2O can be either stored or electrolyzed to produce oxygen and regain the hydrogen atoms. Depending on the application, O2 can be used to replenish the atmosphere in human-crewed missions or as an oxidant for robotic and return missions. Precision Combustion, Inc. (PCI), with support from NASA, has previously developed an efficient and compact Sabatier reactor based on its Microlith catalytic technology and demonstrated the capability to achieve high CO2 conversion and CH4 selectivity (i.e., 90% of the thermodynamic equilibrium values) at high space velocities and low operating temperatures. This was made possible through the use of high-heat-transfer and high-surface-area Microlith catalytic substrates. Using this Sabatier reactor, PCI designed, developed, and demonstrated a stand-alone CO2 Reduction Assembly (CRA) test system for ground demonstration and performance validation. The Sabatier reactor was integrated with the necessary balance-of-plant components and controls system, allowing an automated, single "push-button" start-up and shutdown. Additionally, the versatility of the test system prototype was demonstrated by operating it under H2-rich (H2/CO2 of >4), stoichiometric (ratio of 4), and CO2-rich conditions (ratio of <4) without affecting its performance and meeting the equilibrium-predicted water recovery rates. In this paper, the development of the CRA test system for ground demonstration will be discussed. Additionally, the performance results from testing the system at various operating conditions and the results from durability testing will be presented

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    50 years of isolation

    Get PDF
    The traditional means for isolating applications from each other is via the use of operating system provided “process” abstraction facilities. However, as applications now consist of multiple fine-grained components, the traditional process abstraction model is proving to be insufficient in ensuring this isolation. Statistics indicate that a high percentage of software failure occurs due to propagation of component failures. These observations are further bolstered by the attempts by modern Internet browser application developers, for example, to adopt multi-process architectures in order to increase robustness. Therefore, a fresh look at the available options for isolating program components is necessary and this paper provides an overview of previous and current research on the area
    • …
    corecore