8,465 research outputs found

    Dynamic safety assessment of a nonlinear pumped-storage generating system in a transient process

    Get PDF
    This paper focuses on a pumped-storage generating system with a reversible Francis turbine and presents an innovative framework for safety assessment in an attempt to overcome their limitations. Thus the aim is to analyze the dynamic safety process and risk probability of the above nonlinear generating system. This study is carried out based on an existing pumped-storage power station. In this paper we show the dynamic safety evaluation process and risk probability of the nonlinear generating system using Fisher discriminant method. A comparison analysis for the safety assessment is performed between two different closing laws, namely the separate mode only to include a guide vane and the linkage mode that includes a guide vane and a ball valve. We find that the most unfavorable condition of the generating system occurs in the final stage of the load rejection transient process. It is also demonstrated that there is no risk to the generating system with the linkage mode but the risk probability of the separate mode is 6 percent. The results obtained are in good agreement with the actual operation of hydropower stations. The developed framework may not only be adopted for the applications of the pumped-storage generating system with a reversible Francis turbine but serves as the basis for the safety assessment of various engineering applications.National Natural Science Foundation of ChinaFundamental Research Funds for the Central UniversitiesScientific research funds of Northwest A&F UniversityScience Fund for Excellent Young Scholars from Northwest A&F University and Shaanxi Nova progra

    Design, Optimization and Testing of Valves for Digital Displacement Machines

    Get PDF

    The application of Bayesian change point detection in UAV fuel systems

    Get PDF
    AbstractA significant amount of research has been undertaken in statistics to develop and implement various change point detection techniques for different industrial applications. One of the successful change point detection techniques is Bayesian approach because of its strength to cope with uncertainties in the recorded data. The Bayesian Change Point (BCP) detection technique has the ability to overcome the uncertainty in estimating the number and location of change point due to its probabilistic theory. In this paper we implement the BCP detection technique to a laboratory based fuel rig system to detect the change in the pre-valve pressure signal due to a failure in the valve. The laboratory test-bed represents a Unmanned Aerial Vehicle (UAV) fuel system and its associated electrical power supply, control system and sensing capabilities. It is specifically designed in order to replicate a number of component degradation faults with high accuracy and repeatability so that it can produce benchmark datasets to demonstrate and assess the efficiency of the BCP algorithm. Simulation shows satisfactory results of implementing the proposed BCP approach. However, the computational complexity, and the high sensitivity due to the prior distribution on the number and location of the change points are the main disadvantages of the BCP approac

    A Design & Optimization Framework for Valves in Digital Displacement Units

    Get PDF

    Safety and maintenance engineering: A compilation

    Get PDF
    A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Safety of personnel engaged in the handling of hazardous materials and equipment, protection of equipment from fire, high wind, or careless handling by personnel, and techniques for the maintenance of operating equipment are reported

    Design, fabrication, and testing of micromachined silicone rubbermembrane valves

    Get PDF
    Technologies for fabricating silicone rubber membranes and integrating them with other processes on silicon wafers have been developed. Silicone rubber has been found to have exceptional mechanical properties including low modulus, high elongation, and good sealing. Thermopneumatically actuated, normally open, silicone rubber membrane valves with optimized components have been designed, fabricated, and tested. Suspended silicon nitride membrane heaters have been developed for low-power thermopneumatic actuation. Composite silicone rubber on Parylene valve membranes have been shown to have low permeability and modulus. Also, novel valve seats were designed to improve sealing in the presence of particles. The valves have been extensively characterized with respect to power consumption versus flow rate and transient response. Low power consumption, high flow rate, and high pressure have been demonstrated. For example, less than 40 mW is required to switch a 1-slpm nitrogen flow at 33 psi. Water requires dose to 100 mW due to the cooling effect of the liquid

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Phase-Tunable Thermal Logic: Computation with Heat

    Full text link
    Boolean algebra, the branch of mathematics where variables can assume only true or false value, is the theoretical basis of classical computation. The analogy between Boolean operations and electronic switching circuits, highlighted by Shannon in 1938, paved the way to modern computation based on electronic devices. The grow of computational power of such devices, after an exciting exponential -Moore trend, is nowadays blocked by heat dissipation due to computational tasks, very demanding after the chips miniaturization. Heat is often a detrimental form of energy which increases the systems entropy decreasing the efficiency of logic operations. Here, we propose a physical system able to perform thermal logic operations by reversing the old heat-disorder epitome into a novel heat-order paradigm. We lay the foundations of heat computation by encoding logic state variables in temperature and introducing the thermal counterparts of electronic logic gates. Exploiting quantum effects in thermally biased Josephson junctions (JJs), we propound a possible realization of a functionally complete dissipationless logic. Our architecture ensures high operation stability and robustness with switching frequencies reaching the GHz

    Single Substrate Electromagnetic Actuator

    Get PDF
    A microvalve which utilizes a low temperature ( <300° C.) fabrication process on a single substrate. The valve uses buckling and an electromagnetic actuator to provide a relatively large closing force and lower power consumption. A buckling technique of the membrane is used to provide two stable positions for the membrane, and to reduce the power consumption and the overall size of the microvalve. The use of a permanent magnet is an alternative to the buckled membrane, or it can be used in combination with the buckled membrane, or two sets of micro-coils can be used in order to open and close the valve, providing the capability for the valve to operate under normally opened or normally closed conditions. Magnetic analysis using ANSYS 5.7 shows that the addition of Orthonol between the coils increases the electromagnetic force by more than 1.5 times. At a flow rate of 1 mL/m, the pressure drop is < 100 Pa. The maximum pressure tested was 57 kPa and the time to open or close the valve in air is under 100 ms. This results in an estimated power consumption of 0.1 mW.Georgia Tech Research Corp

    Modeling and Validation of Moving Coil Actuated Valve for Digital Displacement Machines

    Get PDF
    corecore