164 research outputs found

    UPIR: Toward the Design of Unified Parallel Intermediate Representation for Parallel Programming Models

    Full text link
    The complexity of heterogeneous computing architectures, as well as the demand for productive and portable parallel application development, have driven the evolution of parallel programming models to become more comprehensive and complex than before. Enhancing the conventional compilation technologies and software infrastructure to be parallelism-aware has become one of the main goals of recent compiler development. In this paper, we propose the design of unified parallel intermediate representation (UPIR) for multiple parallel programming models and for enabling unified compiler transformation for the models. UPIR specifies three commonly used parallelism patterns (SPMD, data and task parallelism), data attributes and explicit data movement and memory management, and synchronization operations used in parallel programming. We demonstrate UPIR via a prototype implementation in the ROSE compiler for unifying IR for both OpenMP and OpenACC and in both C/C++ and Fortran, for unifying the transformation that lowers both OpenMP and OpenACC code to LLVM runtime, and for exporting UPIR to LLVM MLIR dialect.Comment: Typos corrected. Format update

    Scalable Applications on Heterogeneous System Architectures: A Systematic Performance Analysis Framework

    Get PDF
    The efficient parallel execution of scientific applications is a key challenge in high-performance computing (HPC). With growing parallelism and heterogeneity of compute resources as well as increasingly complex software, performance analysis has become an indispensable tool in the development and optimization of parallel programs. This thesis presents a framework for systematic performance analysis of scalable, heterogeneous applications. Based on event traces, it automatically detects the critical path and inefficiencies that result in waiting or idle time, e.g. due to load imbalances between parallel execution streams. As a prerequisite for the analysis of heterogeneous programs, this thesis specifies inefficiency patterns for computation offloading. Furthermore, an essential contribution was made to the development of tool interfaces for OpenACC and OpenMP, which enable a portable data acquisition and a subsequent analysis for programs with offload directives. At present, these interfaces are already part of the latest OpenACC and OpenMP API specification. The aforementioned work, existing preliminary work, and established analysis methods are combined into a generic analysis process, which can be applied across programming models. Based on the detection of wait or idle states, which can propagate over several levels of parallelism, the analysis identifies wasted computing resources and their root cause as well as the critical-path share for each program region. Thus, it determines the influence of program regions on the load balancing between execution streams and the program runtime. The analysis results include a summary of the detected inefficiency patterns and a program trace, enhanced with information about wait states, their cause, and the critical path. In addition, a ranking, based on the amount of waiting time a program region caused on the critical path, highlights program regions that are relevant for program optimization. The scalability of the proposed performance analysis and its implementation is demonstrated using High-Performance Linpack (HPL), while the analysis results are validated with synthetic programs. A scientific application that uses MPI, OpenMP, and CUDA simultaneously is investigated in order to show the applicability of the analysis

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Mixed-data-model heterogeneous compilation and OpenMP offloading

    Get PDF
    Heterogeneous computers combine a general-purpose host processor with domain-specific programmable many-core accelerators, uniting high versatility with high performance and energy efficiency. While the host manages ever-more application memory, accelerators are designed to work mainly on their local memory. This difference in addressed memory leads to a discrepancy between the optimal address width of the host and the accelerator. Today 64-bit host processors are commonplace, but few accelerators exceed 32-bit addressable local memory, a difference expected to increase with 128-bit hosts in the exascale era. Managing this discrepancy requires support for multiple data models in heterogeneous compilers. So far, compiler support for multiple data models has not been explored, which hampers the programmability of such systems and inhibits their adoption. In this work, we perform the first exploration of the feasibility and performance of implementing a mixed-data-mode heterogeneous system. To support this, we present and evaluate the first mixed-data-model compiler, supporting arbitrary address widths on host and accelerator. To hide the inherent complexity and to enable high programmer productivity, we implement transparent offloading on top of OpenMP. The proposed compiler techniques are implemented in LLVM and evaluated on a 64+32-bit heterogeneous SoC. Results on benchmarks from the PolyBench-ACC suite show that memory can be transparently shared between host and accelerator at overheads below 0.7 % compared to 32-bit-only execution, enabling mixed-data-model computers to execute at near-native performance
    • …
    corecore