89 research outputs found

    Past Before Future: A Comprehensive Review on Software Defined Networks Road Map

    Get PDF
    Software Defined Networking (SDN) is a paradigm that moves out the network switch2019;s control plane (routing protocols) from the switch and leaves only the data plane (user traffic) inside the switch. Since the control plane has been decoupled from hardware and given to a logically centralized software application called a controller; network devices become simple packet forwarding devices that can be programmed via open interfaces. The SDN2019;s concepts: decoupled control logic and programmable networks provide a range of benefits for management process and has gained significant attention from both academia and industry. Since the SDN field is growing very fast, it is an active research area. This review paper discusses the state of art in SDN, with a historic perspective of the field by describing the SDN paradigm, architecture and deployments in detail

    Progressive Network Deployment, Performance, and Control with Software-defined Networking

    Get PDF
    The inflexible nature of traditional computer networks has led to tightly-integrated systems that are inherently difficult to manage and secure. New designs move low-level network control into software creating software-defined networks (SDN). Augmenting an existing network with these enhancements can be expensive and complex. This research investigates solutions to these problems. It is hypothesized that an add-on device, or shim could be used to make a traditional switch behave as an OpenFlow SDN switch while maintaining reasonable performance. A design prototype is found to cause approximately 1.5% reduction in throughput for one ow and less than double increase in latency, showing that such a solution may be feasible. It is hypothesized that a new design built on event-loop and reactive programming may yield a controller that is higher-performing and easier to program. The library node-openflow is found to have performance approaching that of professional controllers, however it exhibits higher variability in response rate. The framework rxdn is found to exceed performance of two comparable controllers by at least 33% with statistical significance in latency mode with 16 simulated switches, but is slower than the library node-openflow or professional controllers (e.g., Libfluid, ONOS, and NOX). Collectively, this work enhances the tools available to researchers, enabling experimentation and development toward more sustainable and secure infrastructur

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Rethinking Software Network Data Planes in the Era of Microservices

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Framework for eBPF-Based Network Functions in an Era of Microservices

    Get PDF
    By moving network functionality from dedicated hardware to software running on end-hosts, Network Functions Virtualization (NFV) pledges the benefits of cloud computing to packet processing. While most of the NFV frameworks today rely on kernel-bypass approaches, no attention has been given to kernel packet processing, which has always proved hard to evolve and to program. In this article, we present Polycube, a software framework whose main goal is to bring the power of NFV to in-kernel packet processing applications, enabling a level of flexibility and customization that was unthinkable before. Polycube enables the creation of arbitrary and complex network function chains, where each function can include an efficient in-kernel data plane and a flexible user-space control plane with strong characteristics of isolation, persistence, and composability. Polycube network functions, called Cubes, can be dynamically generated and injected into the kernel networking stack, without requiring custom kernels or specific kernel modules, simplifying the debugging and introspection, which are two fundamental properties in recent cloud environments. We validate the framework by showing significant improvements over existing applications, and we prove the generality of the Polycube programming model through the implementation of complex use cases such as a network provider for Kubernetes

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2
    • …
    corecore