5 research outputs found

    From atomic level to large-scale Monte Carlo magnetic simulations

    Get PDF
    This paper refers to Monte Carlo magnetic simulations for large-scale systems. We propose scaling rules to facilitate analysis of mesoscopic objects using a relatively small amount of system nodes. In our model, each node represents a volume defined by an enlargement factor. As a consequence of this approach, the parameters describing magnetic interactions on the atomic level should also be re-scaled, taking into account the detailed thermodynamic balance as well as energetic equivalence between the real and re-scaled systems. Accuracy and e ciency of the model have been depicted through analysis of the size e ects of magnetic moment configuration for various characteristic objects. As shown, the proposed scaling rules, applied to the disorder-based cluster Monte Carlo algorithm, can be considered suitable tools for designing new magnetic materials and a way to include low-level or first principle calculations in finite element Monte Carlo magnetic simulations

    Study of Condensed Matter Systems with Monte Carlo Simulation on Heterogeneous Computing Systems

    Get PDF
    We study the Edwards-Anderson model on a simple cubic lattice with a finite constant external field. We employ an indicator composed of a ratio of susceptibilities at finite momenta, which was recently proposed to avoid the difficulties of a zero momentum quantity, for capturing the spin glass phase transition. Unfortunately, this new indicator is fairly noisy, so a large pool of samples at low temperature and small external field are needed to generate results with a sufficiently small statistical error for analysis. We thus implement the Monte Carlo method using graphics processing units to drastically speed up the simulation. We confirm previous findings that conventional indicators for the spin glass transition, including the Binder ratio and the correlation length do not show any indication of a transition for rather low temperatures. However, the ratio of spin glass susceptibilities does show crossing behavior, albeit a systematic analysis is beyond the reach of the present data. This reveals the difficulty with current numerical methods and computing capability in studying this problem. One of the fundamental challenges of theoretical condensed matter physics is the accurate solution of quantum impurity models. By taking expansion in the hybridization about an exactly solved local limit, one can formulate a quantum impurity solver. We implement the hybridization expansion quantum impurity solver on Intel Xeon Phi accelerators, and aim to apply this approach on the Dynamic Hubbard Models

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered
    corecore