2,535 research outputs found

    Assessment of a Universal Reconfiguration-less Control Approach in Open-Phase Fault Operation for Multiphase Drives

    Get PDF
    Multiphase drives have been important in particular industry applications where reliability is a desired goal. The main reason for this is their inherent fault tolerance. Di erent nonlinear controllers that do not include modulation stages, like direct torque control (DTC) or model-based predictive control (MPC), have been used in recent times to govern these complex systems, including mandatory control reconfiguration to guarantee the fault tolerance characteristic. A new reconfiguration-less approach based on virtual voltage vectors (VVs) was recently proposed for MPC, providing a natural healthy and faulty closed-loop regulation of a particular asymmetrical six-phase drive. This work validates the interest in the reconfiguration-less approach for direct controllers and multiphase drives

    Adding inverter fault detection to model-based predictive control for flying-capacitor inverters

    Get PDF
    As inverters are often used in critical applications, reliability is an important issue. Especially the power electronic switches and gate drivers, the most essential components of the inverter, are vulnerable parts in real live operation. Therefore this paper focuses on open switch fault detection for multilevel inverters. When a single-switch open circuit fault occurs in one of the power electronic switches, the algorithm can detect the fault and the switch that is causing it. The detection is worked out for both a linear resistive inductive load and an induction motor. The proposed algorithm is an extension of an already available finite-set model based predictive control algorithm. Therefore no extra hardware or measurements are required. The paper also discusses a suggested method for reconfiguration after fault detection. Computer simulation and experimental verifications validate the proposed methods

    Multiphase Current Imbalance Localization Method Applied to Natural Fault- Tolerant Strategies

    Get PDF
    Multiphase machines are interesting options for high-reliability applications due to their inherent fault tolerance against open-circuit faults (OCFs). Moreover, if the regulation of the x-y currents is realized in open-loop mode using virtual voltage vectors (VVs), the mandatory post-fault control reconfiguration is avoided. The new reconfiguration-less approach was recently defined as a natural/passive fault-tolerant strategy, offering good prospects for industry applications. This work extends the idea to the fault detection (FD) procedure and suggests new settings for the current imbalance localization (CIL) method. The proposal is based on the vector space decomposition (VSD) approach that allows the joint detection of OCFs and stator resistances dissymmetry (RDs). Experimental results in a five-phase induction motor (IM) drive using VVs confirm the viability of the technique

    Open-phase fault operation on multiphase induction 3 motor drives

    Get PDF
    Hugo Guzman, Ignacio Gonzalez, Federico Barrero and Mario Durán (2015). Open-Phase Fault Operation on Multiphase Induction Motor Drives, Induction Motors - Applications, Control and Fault Diagnostics, Dr. Raul Gregor (Ed.), ISBN: 978-953-51-2207-4, InTech, DOI: 10.5772/60810. Available from: http://www.intechopen.com/books/induction-motors-applications-control-and-fault-diagnostics/open-phase-fault-operation-on-multiphase-induction-motor-drivesMultiphase machines have been recognized in the last few years like an attractive alternative to conventional three-phase ones. This is due to their usefulness in a niche of applications where the reduction in the total power per phase and, mainly, the high overall system reliability and the ability of using the multiphase machine in faulty conditions are required. Electric vehicle and railway traction, all-electric ships, more-electric aircraft or wind power generation systems are examples of up-to-date real applications using multiphase machines, most of them taking advantage of the ability of continuing the operation in faulty conditions. Between the available multiphase machines, symmetrical five-phase induction machines are probably one of the most frequently considered multiphase machines in recent research. However, other multiphase machines have also been used in the last few years due to the development of more powerful microprocessors. This chapter analyzes the behavior of generic n-phase machines (beingn any odd number higher than 3) in faulty operation (considering the most common faulty operation, i.e. the open phase fault). The obtained results will be then particularized to the 5-phase case, where some simulation and experimental results will be presented to show the behavior of the entire system in healthy and faulty conditions. The chapter will be organized as follows: First, the different faults in a multiphase machine are analyzed. Fault conditions are de tailed and explained, and the interest of a multiphase machine in the management of faults is stated. The effect of the open-phase fault operation in the machine model is then studied. A generic n-phase machine is considered, being n any odd number greater than three. The analysis is afterwards particularized to the 5-phase machine, where the open phase fault condition is managed using different control methods and the obtained results are compared. Finally, the conclusions are presented in the last section of the chapter

    Open-Phase Fault Operation on Multiphase Induction Motor Drives

    Get PDF
    Multiphase machines have been recognized in the last few years like an attractive alternative to conventional three-phase ones. This is due to their usefulness in a niche of applications where the reduction in the total power per phase and, mainly, the high overall system reliability and the ability of using the multiphase machine in faulty conditions are required. Electric vehicle and railway traction, all-electric ships, more-electric aircraft or wind power generation systems are examples of up-to-date real applications using multiphase machines, most of them taking advantage of the ability of continuing the operation in faulty conditions. Between the available multiphase machines, symmetrical five-phase induction machines are probably one of the most frequently considered multiphase machines in recent research. However, other multiphase machines have also been used in the last few years due to the development of more powerful microprocessors. This chapter analyzes the behavior of generic n-phase machines (being n any odd number higher than 3) in faulty operation (considering the most common faulty operation, i.e. the open-phase fault). The obtained results will be then particularized to the 5-phase case, where some simulation and experimental results will be presented to show the behavior of the entire system in healthy and faulty conditions. The chapter will be organized as follows: First, the different faults in a multiphase machine are analyzed. Fault conditions are detailed and explained, and the interest of a multiphase machine in the management of faults is stated. The effect of the open-phase fault operation in the machine model is then studied. A generic n-phase machine is considered, being n any odd number greater than three. The analysis is afterwards particularized to the 5-phase machine, where the open-phase fault condition is managed using different control methods and the obtained results are compared. Finally, the conclusions are presented in the last section of the chapter

    Extension of Finite-Control Set Model-Based Predictive Control Techniques to Fault-Tolerant Multiphase Drives: Analysis and Contributions

    Get PDF
    Las máquinas eléctricas son una de las principales tecnologías que hacen posible las energías renovables y los vehículos eléctricos. La necesidad constante de incrementar la capacidad de potencia para generar más energía o para impulsar vehículos cada vez más grandes, ha motivado la investigación y el desarrollo en el área de las máquinas multifásicas las cuales, gracias a su número de fases, permiten no sólo manejar más potencia con menos pulsaciones de par y contenido armónico en la corriente que las máquinas trifásicas convencionales, sino que también permiten obtener una mayor tolerancia a fallos, aumentando el interés de su implementación en aplicaciones donde la fiabilidad juega un papel importante por razones económicas y de seguridad. La investigación más reciente en el área de sistemas multifásicos se centra en el desarrollo de técnicas que permitan explotar las características específicas y especiales de las máquinas multifásicas, viendo el incremento en el número de fases no como un aumento en la complejidad de implementación, sino como un mayor número de grados de libertad tanto en el diseño como en el control, permitiendo mejorar sus prestaciones y fiabilidad, haciéndolas más atractivas para su uso en aplicaciones industriales. Es así como se han desarrollado técnicas de control que permitan operar a alta velocidad o alto par, tolerancia a diferentes tipos de fallos y máquinas con diferentes conexionados de devanados o con sistemas formados por múltiples variadores y máquinas. El objetivo de esta tesis doctoral es la extensión del control predictivo para máquinas multifásicas (específicamente el control predictivo de estados finitos basado en modelo o FCS-MPC por sus siglas en inglés) a la operación tolerante a fallos, aprovechando la capacidad de tolerancia a fallos que las máquinas multifásicas poseen, asegurando su funcionamiento de una manera eficiente y controlada. Con este fin se estudió el modelo matemático de la máquina en condiciones de pre- y post- falta considerando diferentes tipos de faltas, permitiendo establecer el efecto que las condiciones de fallo tienen en el comportamiento del sistema. Se desarrollaron modelos de simulación de una máquina de inducción de cinco fases, considerando faltas de fase abierta y en el disparo de los IGBT’s de una fase, permitiendo el diseño y validación del controlador FCS-MPC tolerante a fallos, cuyos resultados obtenidos fueron presentados en diversos congresos internacionales. La posterior implementación y validación experimental del control tolerante a fallos propuesto dio lugar a la publicación de dos de los artículos científicos presentados en esta tesis. Del mismo modo, se desarrolló un control tolerante a fallos basado en controladores lineales (de tipo resonante), teniendo en cuenta los esquemas propuestos en publicaciones científicas recientes y se realizó una comparativa entre el control tolerante a fallos basado en FCS-MPC y el controlador resonante ante un fallo de fase abierta, mediante resultados de simulación y experimentales, dando lugar a la publicación en un congreso internacional y en un artículo de revista científica. Las contribuciones de esta tesis doctoral se han publicado en la revista científica IEEE Transactions on Industrial Electronics entre los años 2013/2015

    Analysis of artificial intelligence in industrial drives and development of fault deterrent novel machine learning prediction algorithm

    Get PDF
    Industrial sectors rely on electrical inverter drives to power their various load segments. Because the majority of their load is nonlinear, their drive system behaviour is unpredictable. Manufacturers continue to invest much in research and development to ensure that the device can resist any disturbances caused by the power system or load-side changes. The literature in this field of study depicts numerous effects caused by harmonics, a sudden inrush of currents, power interruption in all phases, leakage current effects and torque control of the system, among others. These and numerous other effects have been discovered as a result of research, and the inverter drive has been enhanced to a more advanced device than its earlier version. Despite these measures, inverter drives continue to operate poorly and frequently fail throughout the warranty term. This failure analysis is used as the basis for this research work, which presents a method for forecasting faulty sections using power system parameters. The said parameters were obtained by field-test dataset analysis in industrial premises. The prediction parameter is established by the examination of field research test data. The same data are used to train the machine learning system for future pre-emptive action. When exposed to live data feeds, the algorithm may forecast the future and suggest the same. Thus, when comparing the current status of the device to the planned study effort, the latter provides an advantage in terms of safeguarding the device and avoiding a brief period of total shutdown. As a result, the machine learning model was trained using the tested dataset and employed for prediction purposes; as a result, it provides a more accurate prediction, which benefits end consumers rather than improving the power system\u27s grid-side difficulties

    Inverter Fault Diagnosis of an Electrical Series-Connected Two Sinusoidal Six-Phase Permanent Magnet Machines Drive

    Get PDF
    This paper investigates a real-time fault diagnostic of a transportation system which needs two drives with fault-tolerance capabilities. Because of constraints on the mass of the system and on the cost of the Voltage Source Inverter (VSI), a drive with two Six-Phase Permanent Magnet Synchronous Machines (PMSM) in series-connection supplied by two six-leg inverters is chosen. Despite the serial -connection, independent control of the two machines and fault –tolerance to open-switch fault is ensured. Nevertheless, a Fault Detection Identification (FDI) process is required for analysis and/or control reconfiguration. The proposed FDI is based on the combination of different criteria obtained from the two zero-sequence currents and from the normalized currents mapped into two frames defined by the Concordia Transformation. Results obtained from simulation and experimental tests show the effectiveness of the proposal.Projet CE2
    corecore