589 research outputs found

    Eigenvector-based identification of bipartite subgraphs

    Full text link
    We report our experiments in identifying large bipartite subgraphs of simple connected graphs which are based on the sign pattern of eigenvectors belonging to the extremal eigenvalues of different graph matrices: adjacency, signless Laplacian, Laplacian, and normalized Laplacian matrix. We compare the performance of these methods to a local switching algorithm based on the Erdos bound that each graph contains a bipartite subgraph with at least half of its edges. Experiments with one scale-free and three random graph models, which cover a wide range of real-world networks, show that the methods based on the eigenvectors of the normalized Laplacian and the adjacency matrix yield slightly better, but comparable results to the local switching algorithm. We also formulate two edge bipartivity indices based on the former eigenvectors, and observe that the method of iterative removal of edges with maximum bipartivity index until one obtains a bipartite subgraph, yields comparable results to the local switching algorithm, and significantly better results than an analogous method that employs the edge bipartivity index of Estrada and Gomez-Gardenes.Comment: 20 pages, 8 figure

    Unconstraining Graph-Constrained Group Testing

    Get PDF
    In network tomography, one goal is to identify a small set of failed links in a network using as little information as possible. One way of setting up this problem is called graph-constrained group testing. Graph-constrained group testing is a variant of the classical combinatorial group testing problem, where the tests that one is allowed are additionally constrained by a graph. In this case, the graph is given by the underlying network topology. The main contribution of this work is to show that for most graphs, the constraints imposed by the graph are no constraint at all. That is, the number of tests required to identify the failed links in graph-constrained group testing is near-optimal even for the corresponding group testing problem with no graph constraints. Our approach is based on a simple randomized construction of tests. To analyze our construction, we prove new results about the size of giant components in randomly sparsified graphs. Finally, we provide empirical results which suggest that our connected-subgraph tests perform better not just in theory but also in practice, and in particular perform better on a real-world network topology

    Local Access to Huge Random Objects Through Partial Sampling

    Get PDF
    © Amartya Shankha Biswas, Ronitt Rubinfeld, and Anak Yodpinyanee. Consider an algorithm performing a computation on a huge random object (for example a random graph or a “long” random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally “on-the-fly” (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire object up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the Erdös-RĂ©nyi G(n, p) model for all values of p, and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we give the first local-access implementation for All-Neighbors queries in the (sparse and directed) Kleinberg’s Small-World model. Our implementations require no pre-processing time, and answer each query using O(poly(log n)) time, random bits, and additional space. Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths (balanced random walks on the integer line that are always non-negative). Here, we support Height queries to find the location of the walk, and First-Return queries to find the time when the walk returns to a specified location. This in turn can be used to implement Next-Neighbor queries on random rooted ordered trees, and Matching-Bracket queries on random well bracketed expressions (the Dyck language). Finally, we introduce two features to define a new model that: (1) allows multiple independent (and even simultaneous) instantiations of the same implementation, to be consistent with each other without the need for communication, (2) allows us to generate a richer class of random objects that do not have a succinct description. Specifically, we study uniformly random valid q-colorings of an input graph G with maximum degree ∆. This is in contrast to prior work in the area, where the relevant random objects are defined as a distribution with O(1) parameters (for example, n and p in the G(n, p) model). The distribution over valid colorings is instead specified via a “huge” input (the underlying graph G), that is far too large to be read by a sub-linear time algorithm. Instead, our implementation accesses G through local neighborhood probes, and is able to answer queries to the color of any given vertex in sub-linear time for q ≄ 9∆, in a manner that is consistent with a specific random valid coloring of G. Furthermore, the implementation is memory-less, and can maintain consistency with non-communicating copies of itself

    On Finding Constrained Independent Sets in Cycles

    Get PDF
    • 

    corecore