31,238 research outputs found

    The use of blocking sets in Galois geometries and in related research areas

    Get PDF
    Blocking sets play a central role in Galois geometries. Besides their intrinsic geometrical importance, the importance of blocking sets also arises from the use of blocking sets for the solution of many other geometrical problems, and problems in related research areas. This article focusses on these applications to motivate researchers to investigate blocking sets, and to motivate researchers to investigate the problems that can be solved by using blocking sets. By showing the many applications on blocking sets, we also wish to prove that researchers who improve results on blocking sets in fact open the door to improvements on the solution of many other problems

    Towards non-reductive geometric invariant theory

    Full text link
    We study linear actions of algebraic groups on smooth projective varieties X. A guiding goal for us is to understand the cohomology of "quotients" under such actions, by generalizing (from reductive to non-reductive group actions) existing methods involving Mumford's geometric invariant theory (GIT). We concentrate on actions of unipotent groups H, and define sets of stable points X^s and semistable points X^{ss}, often explicitly computable via the methods of reductive GIT, which reduce to the standard definitions due to Mumford in the case of reductive actions. We compare these with definitions in the literature. Results include (1) a geometric criterion determining whether or not a ring of invariants is finitely generated, (2) the existence of a geometric quotient of X^s, and (3) the existence of a canonical "enveloping quotient" variety of X^{ss}, denoted X//H, which (4) has a projective completion given by a reductive GIT quotient and (5) is itself projective and isomorphic to Proj(k[X]^H) when k[X]^H is finitely generated.Comment: 37 pages, 1 figure (parabola2.eps), in honor of Bob MacPherson's 60th birthda

    Conjugate Projective Limits

    Full text link
    We characterize conjugate nonparametric Bayesian models as projective limits of conjugate, finite-dimensional Bayesian models. In particular, we identify a large class of nonparametric models representable as infinite-dimensional analogues of exponential family distributions and their canonical conjugate priors. This class contains most models studied in the literature, including Dirichlet processes and Gaussian process regression models. To derive these results, we introduce a representation of infinite-dimensional Bayesian models by projective limits of regular conditional probabilities. We show under which conditions the nonparametric model itself, its sufficient statistics, and -- if they exist -- conjugate updates of the posterior are projective limits of their respective finite-dimensional counterparts. We illustrate our results both by application to existing nonparametric models and by construction of a model on infinite permutations.Comment: 49 pages; improved version: revised proof of theorem 3 (results unchanged), discussion added, exposition revise
    • …
    corecore