21,049 research outputs found

    Tampering in RFID: A Survey on Risks and Defenses

    Get PDF
    RFID is a well-known pervasive technology, which provides promising opportunities for the implementation of new services and for the improvement of traditional ones. However, pervasive environments require strong efforts on all the aspects of information security. Notably, RFID passive tags are exposed to attacks, since strict limitations affect the security techniques for this technology. A critical threat for RFIDbased information systems is represented by data tampering, which corresponds to the malicious alteration of data recorded in the tag memory. The aim of this paper is to describe the characteristics and the effects of data tampering in RFID-based information systems, and to survey the approaches proposed by the research community to protect against it. The most important recent studies on privacy and security for RFID-based systems are examined, and the protection given against tampering is evaluated. This paper provides readers with an exhaustive overview on risks and defenses against data tampering, highlighting RFID weak spots and open issues

    Tamper detection in RFID-enabled supply chains using fragile watermarking

    Get PDF
    While mainstream RFID research has been focused on solving privacy issues, security in general and data tampering in specific is still an open question. This paper analyzes potential security threats especially data tampering in RFID-enabled supply chains and proposes solutions how these threats might be addressed using fragile watermarking technologies. We first survey RFID system and its security problems, and then explain the importance of fragile watermarking schemes for RFID systems and possible applications using fragile watermarking to detect and locate any modification in RFID systems. Finally we suggest possible solutions using fragile watermarking for RFID-enabled supply chain

    Critical Management Issues for Implementing RFID in Supply Chain Management

    Get PDF
    The benefits of radio frequency identification (RFID) technology in the supply chain are fairly compelling. It has the potential to revolutionise the efficiency, accuracy and security of the supply chain with significant impact on overall profitability. A number of companies are actively involved in testing and adopting this technology. It is estimated that the market for RFID products and services will increase significantly in the next few years. Despite this trend, there are major impediments to RFID adoption in supply chain. While RFID systems have been around for several decades, the technology for supply chain management is still emerging. We describe many of the challenges, setbacks and barriers facing RFID implementations in supply chains, discuss the critical issues for management and offer some suggestions. In the process, we take an in-depth look at cost, technology, standards, privacy and security and business process reengineering related issues surrounding RFID technology in supply chains

    Accessing Antecedents and Outcomes of RFID Implementation in Health Care

    Get PDF
    This research first conceptualizes, develops, and validates four constructs for studying RFID in health care, including Drivers (Internal and External), Implementation Level (Clinical Focus and Administrative Focus), Barriers (Cost Issues, Lack of Understanding, Technical Issues, and Privacy and Security Concerns), and Benefits (Patient Care, Productivity, Security and Safety, Asset Management, and Communication). Data for the study were collected from 88 health care organizations and the measurement scales were validated using structural equation modeling. Second, a framework is developed to discuss the causal relationships among the above mentioned constructs. It is found that Internal Drivers are positively related to Implementation Level, which in turn is positively related to Benefits and Performance. In addition, Barriers are found to be positively related to Implementation Level, which is in contrast to the originally proposed negative relationship. The research also compares perception differences regarding RFID implementation among the non-implementers, future implementers, and current implementers of RFID. It is found that both future implementers and current implementers consider RFID barriers to be lower and benefits to be higher compared to the non-implementers. This paper ends with our research implications, limitations and future research

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique
    corecore