5,837 research outputs found

    Teenage Parenthood and Social Exclusion: A multi-method study

    Get PDF

    Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Get PDF
    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included

    The UARS and open data concept and analysis study

    Get PDF
    Alternative concepts for a common design for the UARS and OPEN Central Data Handling Facility (CDHF) are offered. Costs for alternative implementations of the UARS designs are presented, showing that the system design does not restrict the implementation to a single manufacturer. Processing demands on the alternative UARS CDHF implementations are then discussed. With this information at hand together with estimates for OPEN processing demands, it is shown that any shortfall in system capability for OPEN support can be remedied by either component upgrades or array processing attachments rather than a system redesign. In addition to a common system design, it is shown that there is significant potential for common software design, especially in the areas of data management software and non-user-unique production software. Archiving the CDHF data are discussed. Following that, cost examples for several modes of communications between the CDHF and Remote User Facilities are presented. Technology application is discussed

    Development of a Three-Dimensional Trap for Single-Molecule Studies with a Four-Focus Confocal Fluorescence Microscope

    Get PDF
    This dissertation presents the development of an instrument based on a confocal fluorescence microscope for feedback-driven trapping of a single molecule or nanoparticle in three-dimensions as it undergoes Brownian diffusion within an aqueous medium. Such trapping enables prolonged observation of a molecule while untethered and free from collisions with surfaces, which is needed to improve various studies, such as investigations of protein folding dynamics, molecular heterogeneities, and interactions. In the experiment, a dilute solution (~100 pM) of fluorescent nano-objects is inserted into a microfluidic device, which achieves trapping by control of electroosmotic flows in two crossed channels. The geometry, which is designed using COMSOL Multiphysics, funnels the flows to achieve sufficient electroosmotic speed to counteract Brownian diffusion while maintaining a 4:1 width-to-depth for wide-angle light collection by the microscope objective from the center of the crossing region. A fluorescence excitation volume centered at this point is defined by four overlapping focused laser beams, each with ~0.5 μm beam waist but with centers offset in a tetrahedral arrangement. The beams are derived from a mode-locked laser using a series of beam splitters with the pulses in each beam delayed to provide pulse-interleaved excitation at 304 MHz. Fluorescence is collected through a pinhole and split to two single-photon detectors, which provide signals for an FPGA (Field Programmable Gate Array) for time-gated counting into four channels synchronous with the pulses in each of the laser beams. The FPGA also bins the counts and applies an algorithm to estimate the direction of the position offset of the nano-object and to adjust four voltages. These are applied at the four fluid inlets of the microfluidic cross-channel to electroosmotically drive the fluid to keep the nano-object at the midpoint of the four foci. Movies of camera imaging of trapped nano-objects were acquired. Results show trapping of 40 nm FluoSpheres for ~4 minutes, 20 nm FluoSpheres for ~25 seconds, and 5 nm protein molecules of Streptavidin-Alexa Fluor™ 647 for ~1.5 seconds. In addition, Maximum Likelihood Estimation of positions from binned photons was conducted for the FluoSphere experiments to estimate effective spring constants of the trap

    Composite structural materials

    Get PDF
    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail

    A study of the durability of beryllium rocket engines

    Get PDF
    An experimental test program was performed to demonstrate the durability of a beryllium INTEREGEN rocket engine when operating under conditions simulating the space shuttle reaction control system. A vibration simulator was exposed to the equivalent of 100 missions of X, Y, and Z axes random vibration to demonstrate the integrity of the recently developed injector-to-chamber braze joint. An off-limits engine was hot fired under extreme conditions of mixture ratio, chamber pressure, and orifice plugging. A durability engine was exposed to six environmental cycles interspersed with hot-fire tests without intermediate cleaning, service, or maintenance. Results from this program indicate the ability of the beryllium INTEREGEN engine concept to meet the operational requirements of the space shuttle reaction control system

    Space Construction Experiment Definition Study (SCEDS), part 1. Volume 1: Executive summary

    Get PDF
    Definition was completed on a basic flight experiment which will provide data on the construction of large space systems from the orbiter which could not be practicably obtained from ground tests. Dynamic behavior of a representative large structure was predicted. On-orbit construction operations were studied. Orbiter control during and after construction was investigated. Evolutionary or supplemental flight experiments for the development of augmentation of a basic flight experiment were identified and defined

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Evaluation procedure for blowing machine monitoring and predicting bearing SKFNU6322 failure by power spectral density

    Get PDF
    This work shows the results of the comparative study of characteristic frequencies in terms of Power Spectral Density (PSD) or RMS generated by a blower unit and the SKFNU322 bearing. Data is collected following ISO 10816, using Emonitor software and with speed values in RMS to avoid high and low frequency signal masking. Bearing failure is the main cause of operational shutdown in industrial sites. The difficulty of prediction is the type of breakage and the high number of variables involved. Monitoring and analysing all the vari- ables of the SKFNU322 bearing and those of machine operation for 15 years allowed to de- velop a new predictive maintenance protocol. This method makes it possible to reduce from 6 control points to one, and to determine which of the 42 variables is the most incidental in the correct operation, so equipment performance and efficiency is improved, contributing to increased economic profitability. The tests were carried out on a 500 kW unit of power and It was shown that the rotation of the equipment itself caused the most generating variable of vibrational energy

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented
    • …
    corecore