141 research outputs found

    Secondary use of Structured Electronic Health Records Data: From Observational Studies to Deep Learning-based Predictive Modeling

    Get PDF
    With the wide adoption of electronic health records (EHRs), researchers, as well as large healthcare organizations, governmental institutions, insurance, and pharmaceutical companies have been interested in leveraging this rich clinical data source to extract clinical evidence and develop predictive algorithms. Large vendors have been able to compile structured EHR data from sites all over the United States, de-identify these data, and make them available to data science researchers in a more usable format. For this dissertation, we leveraged one of the earliest and largest secondary EHR data sources and conducted three studies of increasing scope. In the first study, which was of limited scope, we conducted a retrospective observational study to compare the effect of three drugs on a specific population of approximately 3,000 patients. Using a novel statistical method, we found evidence that the selection of phenylephrine as the primary vasopressor to induce hypertension for the management of nontraumatic subarachnoid hemorrhage is associated with better outcomes as compared to selecting norepinephrine or dopamine. In the second study, we widened our scope, using a cohort of more than 100,000 patients to train generalizable models for the risk prediction of specific clinical events, such as heart failure in diabetes patients or pancreatic cancer. In this study, we found that recurrent neural network-based predictive models trained on expressive terminologies, which preserve a high level of granularity, are associated with better prediction performance as compared with other baseline methods, such as logistic regression. Finally, we widened our scope again, to train Med-BERT, a foundation model, on more than 20 million patients’ diagnosis data. Med-BERT was found to improve the prediction performance of downstream tasks that have a small sample size, which otherwise would limit the ability of the model to learn good representation. In conclusion, we found that we can extract useful information and train helpful deep learning-based predictive models. Given the limitations of secondary EHR data and taking into consideration that the data were originally collected for administrative and not research purposes, however, the findings need clinical validation. Therefore, clinical trials are warranted to further validate any new evidence extracted from such data sources before updating clinical practice guidelines. The implementability of the developed predictive models, which are in an early development phase, also warrants further evaluation

    Multi-PheWAS intersection approach to identify sex differences across comorbidities in 59 140 pediatric patients with autism spectrum disorder

    Full text link
    [EN] Objective: To identify differences related to sex and define autism spectrum disorder (ASD) comorbidities female-enriched through a comprehensive multi-PheWAS intersection approach on big, real-world data. Although sex difference is a consistent and recognized feature of ASD, additional clinical correlates could help to identify potential disease subgroups, based on sex and age. Materials and Methods: We performed a systematic comorbidity analysis on 1860 groups of comorbidities exploring all spectrum of known disease, in 59 140 individuals (11 440 females) with ASD from 4 age groups. We explored ASD sex differences in 2 independent real-world datasets, across all potential comorbidities by comparing (1) females with ASD vs males with ASD and (2) females with ASD vs females without ASD. Results: We identified 27 different comorbidities that appeared significantly more frequently in females with ASD. The comorbidities were mostly neurological (eg, epilepsy, odds ratio [OR]>1.8, 3-18 years of age), congenital (eg, chromosomal anomalies, OR>2, 3-18 years of age), and mental disorders (eg, intellectual disability, OR>1.7, 6-18 years of age). Novel comorbidities included endocrine metabolic diseases (eg, failure to thrive, OR=2.5, ages 0-2), digestive disorders (gastroesophageal reflux disease: OR=1.7, 6-11 years of age; and constipation: OR>1.6, 3-11 years of age), and sense organs (strabismus: OR>1.8, 3-18 years of age). Discussion: A multi-PheWAS intersection approach on real-world data as presented in this study uniquely contributes to the growing body of research regarding sex-based comorbidity analysis in ASD population. Conclusions: Our findings provide insights into female-enriched ASD comorbidities that are potentially important in diagnosis, as well as the identification of distinct comorbidity patterns influencing anticipatory treatment or referrals.This work has been supported by the National Institutes of Health BD2K grant U54HG007963. JMZ received grants from Stichting de Drie Lichten and Stichting Sophia Kinderziekenhuis Fonds for a research internship at Harvard Medical School.Gutiérrez-Sacristån, A.; Såez Silvestre, C.; De Niz, C.; Jalali, N.; Desain, TN.; Kumar, R.; Zachariasse, JM.... (2021). Multi-PheWAS intersection approach to identify sex differences across comorbidities in 59 140 pediatric patients with autism spectrum disorder. Journal of the American Medical Informatics Association. 29(2):230-238. https://doi.org/10.1093/jamia/ocab14423023829

    The landscape of the methodology in drug repurposing using human genomic data:a systematic review

    Get PDF
    The process of drug development is expensive and time-consuming. In contrast, drug repurposing can be introduced to clinical practice more quickly and at a reduced cost. Over the last decade, there has been a significant expansion of large biobanks that link genomic data to electronic health record (EHR) data, public availability of various databases containing biological and clinical information, and rapid development of novel methodologies and algorithms in integrating different sources of data. This review aims to provide a thorough summary of different strategies that utilize genomic data to seek drug-repositioning opportunities. We searched MEDLINE and EMBASE databases to identify eligible studies up until 1st May 2023, with a total of 102 studies finally included after two-step parallel screening. We summarized commonly used strategies for drug repurposing, including Mendelian randomization, multi-omic-based and network-based studies, and illustrated each strategy with examples, as well as the data sources implemented. By leveraging existing knowledge and infrastructure to expedite the drug discovery process and reduce costs, drug repurposing potentially identifies new therapeutic uses for approved drugs in a more efficient and targeted manner. However, technical challenges when integrating different types of data and biased or incomplete understanding of drug interactions are important hindrances that cannot be disregarded in the pursuit of identifying novel therapeutic applications. This review offers an overview of drug repurposing methodologies, providing valuable insights and guiding future directions for advancing drug repurposing studies

    Implementation of individualised polygenic risk score analysis: a test case of a family of four

    Get PDF
    Background Polygenic risk scores (PRS) have been widely applied in research studies, showing how population groups can be stratified into risk categories for many common conditions. As healthcare systems consider applying PRS to keep their populations healthy, little work has been carried out demonstrating their implementation at an individual level. Case presentation We performed a systematic curation of PRS sources from established data repositories, selecting 15 phenotypes, comprising an excess of 37 million SNPs related to cancer, cardiovascular, metabolic and autoimmune diseases. We tested selected phenotypes using whole genome sequencing data for a family of four related individuals. Individual risk scores were given percentile values based upon reference distributions among 1000 Genomes Iberians, Europeans, or all samples. Over 96 billion allele effects were calculated in order to obtain the PRS for each of the individuals analysed here. Conclusions Our results highlight the need for further standardisation in the way PRS are developed and shared, the importance of individual risk assessment rather than the assumption of inherited averages, and the challenges currently posed when translating PRS into risk metrics

    Use of Text Data in Identifying and Prioritizing Potential Drug Repositioning Candidates

    Get PDF
    New drug development costs between 500 million and 2 billion dollars and takes 10-15 years, with a success rate of less than 10%. Drug repurposing (defined as discovering new indications for existing drugs) could play a significant role in drug development, especially considering the declining success rates of developing novel drugs. In the period 2007-2009, drug repurposing led to the launching of 30-40% of new drugs. Typically, new indications for existing medications are identified by accident. However, new technologies and a large number of available resources enable the development of systematic approaches to identify and validate drug-repurposing candidates with significantly lower cost. A variety of resources have been utilized to identify novel drug repurposing candidates such as biomedical literature, clinical notes, and genetic data. In this dissertation, we focused on using text data in identifying and prioritizing drug repositioning candidates and conducted five studies. In the first study, we aimed to assess the feasibility of using patient reviews from social media to identify potential candidates for drug repurposing. We retrieved patient reviews of 180 medications from an online forum, WebMD. Using dictionary-based and machine learning approaches, we identified disease names in the reviews. Several publicly available resources were used to exclude comments containing known indications and adverse drug effects. After manually reviewing some of the remaining comments, we implemented a rule-based system to identify beneficial effects. The dictionary-based system and machine learning system identified 2178 and 6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common patterns that patients used to report any beneficial effects or uses of medication. After manually reviewing the comments tagged by our rule-based system, we identified five potential drug repurposing candidates. To our knowledge, this was the first study to consider using social media data to identify drug-repurposing candidates. We found that even a rule-based system, with a limited number of rules, could identify beneficial effect mentions in the comments of patients. Our preliminary study shows that social media has the potential to be used in drug repurposing. In the second study, we investigated the significance of extracting information from multiple sentences specifically in the context of drug-disease relation discovery. We used multiple resources such as Semantic Medline, a literature-based resource, and Medline search (for filtering spurious results) and inferred 8,772 potential drug-disease pairs. Our analysis revealed that 6,450 (73.5%) of the 8,772 potential drug-disease relations did not occur in a single sentence. Moreover, only 537 of the drug-disease pairs matched the curated gold standard in the Comparative Toxicogenomics Database (CTD), a trusted resource for drug-disease relations. Among the 537, nearly 75% (407) of the drug-disease pairs occur in multiple sentences. Our analysis revealed that the drug-disease pairs inferred from Semantic Medline or retrieved from CTD could be extracted from multiple sentences in the literature. This highlights the significance of the need for discourse-level analysis in extracting the relations from biomedical literature. In the third and fourth study, we focused on prioritizing drug repositioning candidates extracted from biomedical literature which we refer to as Literature-Based Discovery (LBD). In the third study, we used drug-gene and gene-disease semantic predications extracted from Medline abstracts to generate a list of potential drug-disease pairs. We further ranked the generated pairs, by assigning scores based on the predicates that qualify drug-gene and gene-disease relationships. On comparing the top-ranked drug-disease pairs against the Comparative Toxicogenomics Database, we found that a significant percentage of top-ranked pairs appeared in CTD. Co-occurrence of these high-ranked pairs in Medline abstracts is then used to improve the rankings of the inferred drug-disease relations. Finally, manual evaluation of the top-ten pairs ranked by our approach revealed that nine of them have good potential for biological significance based on expert judgment. In the fourth study, we proposed a method, utilizing information surrounding causal findings, to prioritize discoveries generated by LBD systems. We focused on discovering drug-disease relations, which have the potential to identify drug repositioning candidates or adverse drug reactions. Our LBD system used drug-gene and gene-disease semantic predication in SemMedDB as causal findings and Swanson’s ABC model to generate potential drug-disease relations. Using sentences, as a source of causal findings, our ranking method trained a binary classifier to classify generated drug-disease relations into desired classes. We trained and tested our classifier for three different purposes: a) drug repositioning b) adverse drug-event detection and c) drug-disease relation detection. The classifier obtained 0.78, 0.86, and 0.83 F-measures respectively for these tasks. The number of causal findings of each hypothesis, which were classified as positive by the classifier, is the main metric for ranking hypotheses in the proposed method. To evaluate the ranking method, we counted and compared the number of true relations in the top 100 pairs, ranked by our method and one of the previous methods. Out of 181 true relations in the test dataset, the proposed method ranked 20 of them in the top 100 relations while this number was 13 for the other method. In the last study, we used biomedical literature and clinical trials in ranking potential drug repositioning candidates identified by Phenome-Wide Association Studies (PheWAS). Unlike previous approaches, in this study, we did not limit our method to LBD. First, we generated a list of potential drug repositioning candidates using PheWAS. We retrieved 212,851 gene-disease associations from PheWAS catalog and 14,169 gene-drug relationships from DrugBank. Following Swanson’s model, we generated 52,966 potential drug repositioning candidates. Then, we developed an information retrieval system to retrieve any evidence of those candidates co-occurring in the biomedical literature and clinical trials. We identified nearly 14,800 drug-disease pairs with some evidence of support. In addition, we identified more than 38,000 novel candidates for re-purposing, encompassing hundreds of different disease states and over 1,000 individual medications. We anticipate that these results will be highly useful for hypothesis generation in the field of drug repurposing

    Hypothesis exploration with visualization of variance.

    Get PDF
    BackgroundThe Consortium for Neuropsychiatric Phenomics (CNP) at UCLA was an investigation into the biological bases of traits such as memory and response inhibition phenotypes-to explore whether they are linked to syndromes including ADHD, Bipolar disorder, and Schizophrenia. An aim of the consortium was in moving from traditional categorical approaches for psychiatric syndromes towards more quantitative approaches based on large-scale analysis of the space of human variation. It represented an application of phenomics-wide-scale, systematic study of phenotypes-to neuropsychiatry research.ResultsThis paper reports on a system for exploration of hypotheses in data obtained from the LA2K, LA3C, and LA5C studies in CNP. ViVA is a system for exploratory data analysis using novel mathematical models and methods for visualization of variance. An example of these methods is called VISOVA, a combination of visualization and analysis of variance, with the flavor of exploration associated with ANOVA in biomedical hypothesis generation. It permits visual identification of phenotype profiles-patterns of values across phenotypes-that characterize groups. Visualization enables screening and refinement of hypotheses about variance structure of sets of phenotypes.ConclusionsThe ViVA system was designed for exploration of neuropsychiatric hypotheses by interdisciplinary teams. Automated visualization in ViVA supports 'natural selection' on a pool of hypotheses, and permits deeper understanding of the statistical architecture of the data. Large-scale perspective of this kind could lead to better neuropsychiatric diagnostics

    Integrated methylome and phenome study of the circulating proteome reveals markers pertinent to brain health

    Get PDF
    Characterising associations between the methylome, proteome and phenome may provide insight into biological pathways governing brain health. Here, we report an integrated DNA methylation and phenotypic study of the circulating proteome in relation to brain health. Methylome-wide association studies of 4058 plasma proteins are performed (N = 774), identifying 2928 CpG-protein associations after adjustment for multiple testing. These are independent of known genetic protein quantitative trait loci (pQTLs) and common lifestyle effects. Phenome-wide association studies of each protein are then performed in relation to 15 neurological traits (N = 1,065), identifying 405 associations between the levels of 191 proteins and cognitive scores, brain imaging measures or APOE e4 status. We uncover 35 previously unreported DNA methylation signatures for 17 protein markers of brain health. The epigenetic and proteomic markers we identify are pertinent to understanding and stratifying brain health
    • 

    corecore