4,231 research outputs found

    Design Principles of Mobile Information Systems in the Digital Transformation of the Workplace - Utilization of Smartwatch-based Information Systems in the Corporate Context

    Get PDF
    During the last decades, smartwatches emerged as an innovative and promising technology and hit the consumer market due to the accessibility of affordable devices and predominant acceptance caused by the considerable similarity to common wristwatches. With the unique characteristics of permanent availability, unobtrusiveness, and hands-free operation, they can provide additional value in the corporate context. Thus, this thesis analyzes use cases for smartwatches in companies, elaborates on the design of smartwatch-based information systems, and covers the usability of smartwatch applications during the development of smartwatch-based information systems. It is composed of three research complexes. The first research complex focuses on the digital assistance of (mobile) employees who have to execute manual work and have been excluded so far from the benefits of the digitalization since they cannot operate hand-held devices. The objective is to design smartwatch-based information systems to support workflows in the corporate context, facilitate the daily work of numerous employees, and make processes more efficient for companies. During a design science research approach, smartwatch-based software artifacts are designed and evaluated in use cases of production, support, security service, as well as logistics, and a nascent design theory is proposed to complement theory according to mobile information system research. The evaluation shows that, on the one hand, smartwatches have enormous potential to assist employees with a fast and ubiquitous exchange of information, instant notifications, collaboration, and workflow guidance while they can be operated incidentally during manual work. On the other hand, the design of smartwatch-based information systems is a crucial factor for successful long-term deployment in companies, and especially limitations according to the small form-factor, general conditions, acceptance of the employees, and legal regulations have to be addressed appropriately. The second research complex addresses smartwatch-based information systems at the office workplace. This broadens and complements the view on the utilization of smartwatches in the corporate context in addition to the mobile context described in the first research complex. Though smartwatches are devices constructed for mobile use, the utilization in low mobile or stationary scenarios also has benefits due they exhibit the characteristic of a wearable computer and are directly connected to the employee’s body. Various sensors can perceive employee-, environment- and therefore context-related information and demand the employees’ attention with proactive notifications that are accompanied by a vibration. Thus, a smartwatch-based and gamified information system for health promotion at the office workplace is designed and evaluated. Research complex three provides a closer look at the topic of usability concerning applications running on smartwatches since it is a crucial factor during the development cycle. As a supporting element for the studies within the first and second research complex, a framework for the usability analysis of smartwatch applications is developed. For research, this thesis contributes a systemization of the state-of-the-art of smartwatch utilization in the corporate context, enabling and inhibiting influence factors of the smartwatch adoption in companies, and design principles as well as a nascent design theory for smartwatch-based information systems to support mobile employees executing manual work. For practice, this thesis contributes possible use cases for smartwatches in companies, assistance in decision-making for the introduction of smartwatch-based information systems in the corporate context with the Smartwatch Applicability Framework, situated implementations of a smartwatch-based information system for typical use cases, design recommendations for smartwatch-based information systems, an implementation of a smartwatch-based information system for the support of mobile employees executing manual work, and a usability-framework for smartwatches to automatically access usability of existing applications providing suggestions for usability improvement

    Towards mobile learning deployment in higher learning institutions : a report on the qualitative inquiries conducted in four universities in Tanzania

    Get PDF
    Over the past two decades, mobile learning (m-learning) has been a purposeful area of research among educational technologists, educators and instructional designers whereby doubts and controversies over its relevancy and applicability have been keenly addressed. This paper explores stakeholders’ perceptions of m-learning deployment in Higher Learning Institutions (HLIs). Spe- cifically, we examine the potential of m-learning for HLIs in Tanzania and the challenges that hinder successful m-learning deployment. We adopt a comparative qualitative case study design in which four HLIs in Tanzania were purposefully selected. The study uses a combination of de- sign science research approach and qualitative methods including grounded theory, document re- views, and observation. The respondents included university lecturers, students and ICT experts, who were selected for the interviews through theoretical sampling. The transcripts were loaded, coded and analyzed in NVIVO software. The results indicate that mobiles (smartphone, tablets, laptops, feature-phones etc.) are widely used in the HLIs. Stakeholders perceive that m-learning deployment is important and useful because it improves the quality of the learning experience. The results further indicate that there are financial, pedagogical, technological, infrastructural, individuals – and policy – related challenges that hinder successful deployment of m-learning in HLIs in Tanzania, such as limited network coverage, some students ́ inability to afford mobiles, lack of qualified staff for preparation of mobile content and administration, gaps in the exist- ing policies, and faulty course design. However, our results show that participants are optimistic about the potential of m-learning in the HLIs of Tanzania. They expect that m-learning will im- prove access to learning resources, teacher-student and student-student interaction without being restricted by time or place. Thus, m-learning is considered to have the potential to address issues of crowded classrooms, expertise, access to learning materials, flexibility of the learners as well as remote connectivity.
 We recommend that HLIs should prioritize m-learning and commit resources to the success of the related projects. We also recommend that the governments and stakeholders provide policy interventions, subsidize mobile technologies, expand network coverage, build capacity within and outside HLIs, and improve digital literacy by integrating ICT education at all levels of education

    An approach to pervasive monitoring in dynamic learning contexts : data sensing, communication support and awareness provision

    Get PDF
    It is within the capabilities of current technology to support the emerging learning paradigms. These paradigms suggest that today’s learning activities and environments are pervas ive and require a higher level of dynamism than the traditional learning contexts. Therefore, we have to rethink our approach to learning and use technology not only as a digital information support, but also as an instrument to reinforce knowledge, foster collaboration, promote creativity and provide richer learning experiences. Particularly, this thesis was motivated by the rapidly growing number of smartphone users and the fact that these devices are increasingly becoming more and more resource-rich, in terms of their communication and sensing technologies, display capabilities battery autonomy, etc. Hence, this dissertation benefits from the ubiquity and development of mobile technology, aiming to bridge the gap between the challenges posed by modern learning requirements and the capabilities of current technology. The sensors embedded in smartphones can be used to capture diverse behavioural and social aspects of the users. For example, using microphone and Bluetooth is possible to identify conversation patterns, discover users in proximity and detect face-to-face meetings. This fact opens up exciting possibilities to monitor the behaviour of the user and to provide meaningful feedback. This feedback offers useful information that can help people be aware of and reflect on their behaviour and its effects, and take the necessary actions to improve them. Consequently, we propose a pervasive monitoring system that take advantage of the capabilities of modern smartphones, us ing them to s upport the awarenes s provis ion about as pects of the activities that take place in today’s pervas ive learning environments. This pervasive monitoring system provides (i) an autonomous sensing platform to capture complex information about processes and interactions that take place across multiple learning environments, (ii) an on-demand and s elf-m anaged communication infras tructure, and (ii) a dis play facility to provide “awarenes s inform ation” to the s tudents and/or lecturers. For the proposed system, we followed a research approach that have three main components. First, the description of a generalized framework for pervasive sensing that enables collaborative sensing interactions between smartphones and other types of devices. By allowing complex data capture interactions with diverse remote sensors, devices and data sources, this framework allows to improve the information quality while saving energy in the local device. Second, the evaluation, through a real-world deployment, of the suitability of ad hoc networks to support the diverse communication processes required for pervasive monitoring. This component also includes a method to improve the scalability and reduce the costs of these networks. Third, the design of two awareness mechanisms to allow flexible provision of information in dynamic and heterogeneous learning contexts. These mechanisms rely on the use of smartphones as adaptable devices that can be used directly as awareness displays or as communication bridges to enable interaction with other remote displays available in the environment. Diverse aspects of the proposed system were evaluated through a number of simulations, real-world experiments, user studies and prototype evaluations. The experimental evaluation of the data capture and communication aspects of the system provided empirical evidence of the usefulness and suitability of the proposed approach to support the development of pervasive monitoring solutions. In addition, the proof-of-concept deployments of the proposed awareness mechanisms, performed in both laboratory and real-world learning environments, provided quantitative and qualitative indicators that such mechanisms improve the quality of the awareness information and the user experienceLa tecnología moderna tiene capacidad de dar apoyo a los paradigmas de aprendizaje emergentes. Estos paradigmas sugieren que las actividades de aprendizaje actuales, caracterizadas por la ubicuidad de entornos, son más dinámicas y complejas que los contextos de aprendizaje tradicionales. Por tanto, tenemos que reformular nuestro acercamiento al aprendizaje, consiguiendo que la tecnología sirva no solo como mero soporte de información, sino como medio para reforzar el conocimiento, fomentar la colaboración, estimular la creatividad y proporcionar experiencias de aprendizaje enriquecedoras. Esta tesis doctoral está motivada por el vertiginoso crecimiento de usuarios de smartphones y el hecho de que estos son cada vez más potentes en cuanto a tecnologías de comunicación, sensores, displays, autonomía energética, etc. Por tanto, esta tesis aprovecha la ubicuidad y el desarrollo de esta tecnología, con el objetivo de reducir la brecha entre los desafíos del aprendizaje moderno y las capacidades de la tecnología actual. Los sensores integrados en los smartphones pueden ser utilizados para reconocer diversos aspectos del comportamiento individual y social de los usuarios. Por ejemplo, a través del micrófono y el Bluetooth, es posible determinar patrones de conversación, encontrar usuarios cercanos y detectar reuniones presenciales. Este hecho abre un interesante abanico de posibilidades, pudiendo monitorizar aspectos del comportamiento del usuario y proveer un feedback significativo. Dicho feedback, puede ayudar a los usuarios a reflexionar sobre su comportamiento y los efectos que provoca, con el fin de tomar medidas necesarias para mejorarlo. Proponemos un sistema de monitorización generalizado que aproveche las capacidades de los smartphones para proporcionar información a los usuarios, ayudándolos a percibir y tomar conciencia sobre diversos aspectos de las actividades que se desarrollan en contextos de aprendizaje modernos. Este sistema ofrece: (i) una plataforma de detección autónoma, que captura información compleja sobre los procesos e interacciones de aprendizaje; (ii) una infraestructura de comunicación autogestionable y; (iii) un servicio de visualización que provee “información de percepción” a estudiantes y/o profesores. Para la elaboración de este sistema nos hemos centrado en tres áreas de investigación. Primero, la descripción de una infraestructura de detección generalizada, que facilita interacciones entre smartphones y otros dispositivos. Al permitir interacciones complejas para la captura de datos entre diversos sensores, dispositivos y fuentes de datos remotos, esta infraestructura consigue mejorar la calidad de la información y ahorrar energía en el dispositivo local. Segundo, la evaluación, a través de pruebas reales, de la idoneidad de las redes ad hoc como apoyo de los diversos procesos de comunicación requeridos en la monitorización generalizada. Este área incluye un método que incrementa la escalabilidad y reduce el coste de estas redes. Tercero, el diseño de dos mecanismos de percepción que permiten la provisión flexible de información en contextos de aprendizaje dinámicos y heterogéneos. Estos mecanismos descansan en la versatilidad de los smartphones, que pueden ser utilizados directamente como displays de percepción o como puentes de comunicación que habilitan la interacción con otros displays remotos del entorno. Diferentes aspectos del sistema propuesto han sido evaluados a través de simulaciones, experimentos reales, estudios de usuarios y evaluaciones de prototipos. La evaluación experimental proporcionó evidencia empírica de la idoneidad del sistema para apoyar el desarrollo de soluciones de monitorización generalizadas. Además, las pruebas de concepto realizadas tanto en entornos de aprendizajes reales como en el laboratorio, aportaron indicadores cuantitativos y cualitativos de que estos mecanismos mejoran la calidad de la información de percepción y la experiencia del usuario.Postprint (published version

    Measuring the Use of the Active and Assisted Living Prototype CARIMO for Home Care Service Users: Evaluation Framework and Results

    Get PDF
    To address the challenges of aging societies, various information and communication technology (ICT)-based systems for older people have been developed in recent years. Currently, the evaluation of these so-called active and assisted living (AAL) systems usually focuses on the analyses of usability and acceptance, while some also assess their impact. Little is known about the actual take-up of these assistive technologies. This paper presents a framework for measuring the take-up by analyzing the actual usage of AAL systems. This evaluation framework covers detailed information regarding the entire process including usage data logging, data preparation, and usage data analysis. We applied the framework on the AAL prototype CARIMO for measuring its take-up during an eight-month field trial in Austria and Italy. The framework was designed to guide systematic, comparable, and reproducible usage data evaluation in the AAL field; however, the general applicability of the framework has yet to be validated

    Comparative Study of the Mobile Learning Architectures

    No full text
    International audienceWith the emergence of mobile devices (Smart Phone, PDA, UMPC, game consoles, etc.), learning is changing from electronic learning (e-Learning) to mobile learning (m-learning). In fact, due to the mobility feature, it seems that the m-learning have to be adapted with the change within the context. Several researches addressed this issue and implemented a mobile learning environment to prove its usefulness and feasibility in various domains. In this article, we conduct a comparative study between a list of mobile learning architectures and methods that are presented in the literature. The performance of these architectures is evaluated based on several criteria, such as the adaptation management, which is an important parameter for the management and customization of the learning resources for the learners, as well as the environment, which is a core part of mobile learning systems

    Context Data Categories and Privacy Model for Mobile Data Collection Apps

    Get PDF
    Context-aware applications stemming from diverse fields like mobile health, recommender systems, and mobile commerce potentially benefit from knowing aspects of the user's personality. As filling out personality questionnaires is tedious, we propose the prediction of the user's personality from smartphone sensor and usage data. In order to collect data for researching the relationship between smartphone data and personality, we developed the Android app TYDR (Track Your Daily Routine) which tracks smartphone data and utilizes psychometric personality questionnaires. With TYDR, we track a larger variety of smartphone data than similar existing apps, including metadata on notifications, photos taken, and music played back by the user. For the development of TYDR, we introduce a general context data model consisting of four categories that focus on the user's different types of interactions with the smartphone: physical conditions and activity, device status and usage, core functions usage, and app usage. On top of this, we develop the privacy model PM-MoDaC specifically for apps related to the collection of mobile data, consisting of nine proposed privacy measures. We present the implementation of all of those measures in TYDR. Although the utilization of the user's personality based on the usage of his or her smartphone is a challenging endeavor, it seems to be a promising approach for various types of context-aware mobile applications.Comment: Accepted for publication at the 15th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2018

    Towards a Taxonomy for Data-Driven Digital Services

    Get PDF
    Digitization is transforming every domain nowadays, leading to a growing body of knowledge on digital service innovation. Coupled with the generation and collection of big data, data-driven digital services are becoming of great importance to business, economy and society. This paper aims to classify the different types of data-driven digital services, as a first step to understand their characteristics and dynamics. A taxonomy is developed and the emerging characteristics include data acquisition mechanisms, data exploitation, insights utilization, and service interaction characteristics. The examined services fall into 15 distinct types and are further clustered into 3 classes of types: distributed analytics intermediaries, visual data-driven services, and analytics-embedded services. Such contribution enables service designers and providers to understand the key aspects in utilizing data and analytics in the design and delivery of their services. The taxonomy is set out to shape the direction and scope of scholarly discourse around digital service innovation research and practice
    corecore