250,325 research outputs found

    The phonetics of second language learning and bilingualism

    Get PDF
    This chapter provides an overview of major theories and findings in the field of second language (L2) phonetics and phonology. Four main conceptual frameworks are discussed and compared: the Perceptual Assimilation Model-L2, the Native Language Magnet Theory, the Automatic Selection Perception Model, and the Speech Learning Model. These frameworks differ in terms of their empirical focus, including the type of learner (e.g., beginner vs. advanced) and target modality (e.g., perception vs. production), and in terms of their theoretical assumptions, such as the basic unit or window of analysis that is relevant (e.g., articulatory gestures, position-specific allophones). Despite the divergences among these theories, three recurring themes emerge from the literature reviewed. First, the learning of a target L2 structure (segment, prosodic pattern, etc.) is influenced by phonetic and/or phonological similarity to structures in the native language (L1). In particular, L1-L2 similarity exists at multiple levels and does not necessarily benefit L2 outcomes. Second, the role played by certain factors, such as acoustic phonetic similarity between close L1 and L2 sounds, changes over the course of learning, such that advanced learners may differ from novice learners with respect to the effect of a specific variable on observed L2 behavior. Third, the connection between L2 perception and production (insofar as the two are hypothesized to be linked) differs significantly from the perception-production links observed in L1 acquisition. In service of elucidating the predictive differences among these theories, this contribution discusses studies that have investigated L2 perception and/or production primarily at a segmental level. In addition to summarizing the areas in which there is broad consensus, the chapter points out a number of questions which remain a source of debate in the field today.https://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHhttps://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHhttps://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHAccepted manuscriptAccepted manuscrip

    The isomorphism problem for tree-automatic ordinals with addition

    Get PDF
    This paper studies tree-automatic ordinals (or equivalently, well-founded linearly ordered sets) together with the ordinal addition operation +. Informally, these are ordinals such that their elements are coded by finite trees for which the linear order relation of the ordinal and the ordinal addition operation can be determined by tree automata. We describe an algorithm that, given two tree-automatic ordinals with the ordinal addition operation, decides if the ordinals are isomorphic

    The Isomorphism Relation Between Tree-Automatic Structures

    Get PDF
    An ω\omega-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω\omega-tree-automatic structures. We prove first that the isomorphism relation for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is not determined by the axiomatic system ZFC. Then we prove that the isomorphism problem for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is neither a Σ21\Sigma_2^1-set nor a Π21\Pi_2^1-set

    On a stronger reconstruction notion for monoids and clones

    Full text link
    Motivated by reconstruction results by Rubin, we introduce a new reconstruction notion for permutation groups, transformation monoids and clones, called automatic action compatibility, which entails automatic homeomorphicity. We further give a characterization of automatic homeomorphicity for transformation monoids on arbitrary carriers with a dense group of invertibles having automatic homeomorphicity. We then show how to lift automatic action compatibility from groups to monoids and from monoids to clones under fairly weak assumptions. We finally employ these theorems to get automatic action compatibility results for monoids and clones over several well-known countable structures, including the strictly ordered rationals, the directed and undirected version of the random graph, the random tournament and bipartite graph, the generic strictly ordered set, and the directed and undirected versions of the universal homogeneous Henson graphs.Comment: 29 pp; Changes v1-->v2::typos corr.|L3.5+pf extended|Rem3.7 added|C. Pech found out that arg of L5.3-v1 solved Probl2-v1|L5.3, C5.4, Probl2 of v1 removed|C5.2, R5.4 new, contain parts of pf of L5.3-v1|L5.2-v1 is now L5.3,merged with concl of C5.4-v1,L5.3-v2 extends C5.4-v1|abstract, intro updated|ref[24] added|part of L5.3-v1 is L2.1(e)-v2, another part merged with pf of L5.2-v1 => L5.3-v

    "Scholarly Hypertext: Self-Represented Complexity"

    Get PDF
    Scholarly hypertexts involve argument and explicit selfquestioning, and can be distinguished from both informational and literary hypertexts. After making these distinctions the essay presents general principles about attention, some suggestions for self-representational multi-level structures that would enhance scholarly inquiry, and a wish list of software capabilities to support such structures. The essay concludes with a discussion of possible conflicts between scholarly inquiry and hypertext

    Transforming structures by set interpretations

    Get PDF
    We consider a new kind of interpretation over relational structures: finite sets interpretations. Those interpretations are defined by weak monadic second-order (WMSO) formulas with free set variables. They transform a given structure into a structure with a domain consisting of finite sets of elements of the orignal structure. The definition of these interpretations directly implies that they send structures with a decidable WMSO theory to structures with a decidable first-order theory. In this paper, we investigate the expressive power of such interpretations applied to infinite deterministic trees. The results can be used in the study of automatic and tree-automatic structures.Comment: 36 page
    corecore